Solveeit Logo

Question

Question: If we have a trigonometric equation as \[\sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0...

If we have a trigonometric equation as sin(θ+230)=cos(580)\sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right), then what is the value of cos5θ\cos 5\theta ?

Explanation

Solution

For solving this problem first we find the value of θ\theta from the first equation given. We have to change all the terms in LHS and RHS into same trigonometric parameter that is we change all terms either in sinθ\sin \theta or cosθ\cos \theta by using the formulae cosθ=sin(900θ)\cos \theta =\sin \left( {{90}^{0}}-\theta \right) so that we can equate the angles directly that is if sin(θ1)=sin(θ2)θ1=θ2\sin \left( {{\theta }_{1}} \right)=\sin \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}, when θ1andθ2(0,900){{\theta }_{1}} and {{\theta }_{2}}\in \left( 0,{{90}^{0}} \right). Then we get θ\theta to find required value.

Complete step-by-step solution
Let us consider the given equation that is
sin(θ+230)=cos(580)............equation(i)\sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right)............equation(i)
We know that cosθ=sin(900θ)\cos \theta =\sin \left( {{90}^{0}}-\theta \right).
By using this formulae we can write

& \Rightarrow \cos \left( {{58}^{0}} \right)=\sin \left( {{90}^{0}}-{{58}^{0}} \right) \\\ & \Rightarrow \cos \left( {{58}^{0}} \right)=\sin \left( {{32}^{0}} \right) \\\ \end{aligned}$$ By substituting the above result in the equation (i) we will get $$\begin{aligned} & \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right) \\\ & \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\sin \left( {{32}^{0}} \right) \\\ \end{aligned}$$ Here, we know that if $${{\theta }_{1}} and {{\theta }_{2}}\in \left( 0,{{90}^{0}} \right)$$ we can write $$\sin \left( {{\theta }_{1}} \right)=\sin \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}$$. Now, by applying this theorem to above equation we will get $$\begin{aligned} & \Rightarrow \theta +{{23}^{0}}={{32}^{0}} \\\ & \Rightarrow \theta ={{9}^{0}} \\\ \end{aligned}$$ So, the value of $$\theta $$ is $${{9}^{0}}$$. Now, let us find the value of $$\cos 5\theta $$, by substituting the value of $$\theta $$ we get $$\begin{aligned} & \Rightarrow \cos 5\theta =\cos \left( 5\times {{9}^{0}} \right) \\\ & \Rightarrow \cos 5\theta =\cos \left( {{45}^{0}} \right) \\\ \end{aligned}$$ We know that the value of $$\cos {{45}^{0}}$$ is $$\dfrac{1}{\sqrt{2}}$$, this is the standard value. So by substituting this value in above equation we will get $$\Rightarrow \cos 5\theta =\dfrac{1}{\sqrt{2}}$$ **Therefore, the value of $$\cos 5\theta $$ is $$\dfrac{1}{\sqrt{2}}$$.** **Note:** We can solve this problem in different methods also. Above we converted all terms into $$\sin \theta $$, now let us convert them to $$\cos \theta $$. We know that $$\cos \theta =\sin \left( {{90}^{0}}-\theta \right)$$, similarly we can write $$\sin \theta =\cos \left( {{90}^{0}}-\theta \right)$$ By taking the equation we will get $$\begin{aligned} & \Rightarrow \sin \left( \theta +{{23}^{0}} \right)=\cos \left( {{58}^{0}} \right) \\\ & \Rightarrow \cos \left( {{90}^{0}}-\left( \theta +{{23}^{0}} \right) \right)=\cos \left( {{58}^{0}} \right) \\\ & \Rightarrow \cos \left( {{67}^{0}}-\theta \right)=\cos \left( {{58}^{0}} \right) \\\ \end{aligned}$$ We know that $$\cos \left( {{\theta }_{1}} \right)=\cos \left( {{\theta }_{2}} \right)\Rightarrow {{\theta }_{1}}={{\theta }_{2}}$$, when$${{\theta }_{1}}and{{\theta }_{2}}\in \left( 0,{{90}^{0}} \right)$$ By applying this theorem we get $$\begin{aligned} & \Rightarrow \left( {{67}^{0}}-\theta \right)={{58}^{0}} \\\ & \Rightarrow \theta ={{9}^{0}} \\\ \end{aligned}$$ Now, let us find the value of $$\cos 5\theta $$, by substituting the value of $$\theta $$ we get $$\begin{aligned} & \Rightarrow \cos 5\theta =\cos \left( 5\times {{9}^{0}} \right) \\\ & \Rightarrow \cos 5\theta =\cos \left( {{45}^{0}} \right) \\\ \end{aligned}$$ We know that the value of $$\cos {{45}^{0}}$$ is $$\dfrac{1}{\sqrt{2}}$$, this is the standard value. So by substituting this value in the above equation we will get $$\Rightarrow \cos 5\theta =\dfrac{1}{\sqrt{2}}$$ Therefore, the value of $$\cos 5\theta $$ is $$\dfrac{1}{\sqrt{2}}$$.