Solveeit Logo

Question

Question: If we have a matrix \(\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=5\)...

If we have a matrix ab cd =5\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=5, then find the value of 3a3b 3c3d \left| \begin{matrix} 3a & 3b \\\ 3c & 3d \\\ \end{matrix} \right|.

Explanation

Solution

This is a simple question of determinant which can be easily solved by using the property of determinant. The property is multiplication of determinant by a constant. When we multiply any determinant by a constant then every element of a particular row or column of the determinant gets multiplied by that constant.

Complete step-by-step answer :
It is given in the question that ab cd =5..................(1)\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=5..................(1).
We know that when we multiply any determinant by constant, then every element of a particular row or column of the determinant gets multiplied by that constant.
Let D = a11a12 a21a22 \left| \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right|be a determinant of order 2.
Let k be a constant, and we multiply k with determinant a11a12 a21a22 \left| \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right|, we will get:
k×D=k×a11a12 a21a22 \therefore k\times D=k\times \left| \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right|
kD=ka11ka12 a21a22 \Rightarrow kD=\left| \begin{matrix} k{{a}_{11}} & k{{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right|
Now, when we multiply again the above determinant by k then, we will get:
k×k×D=ka11ka12 ka21ka22 \Rightarrow k\times k\times D=\left| \begin{matrix} k{{a}_{11}} & k{{a}_{12}} \\\ k{{a}_{21}} & k{{a}_{22}} \\\ \end{matrix} \right|
We have to find the value of the determinant 3a3b 3c3d \left| \begin{matrix} 3a & 3b \\\ 3c & 3d \\\ \end{matrix} \right|.
Here, it can be seen that 3 is common to all element row 1 and row 2 both of the above determinant. So, when we take out 3 common from row 1, we will get:
So, 3a3b 3c3d \left| \begin{matrix} 3a & 3b \\\ 3c & 3d \\\ \end{matrix} \right| can be rewritten as:
3×ab 3c3d \Rightarrow 3\times \left| \begin{matrix} a & b \\\ 3c & 3d \\\ \end{matrix} \right|
Now, we will take out 3 common again from row 2, then we will get:
3×3ab cd \Rightarrow 3\times 3\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|
From, equation (1), we know that ab cd =5\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=5
3×3×ab cd =3×3×5\therefore 3\times 3\times \left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=3\times 3\times 5
So, 3a3b 3c3d =45\left| \begin{matrix} 3a & 3b \\\ 3c & 3d \\\ \end{matrix} \right|=45
Hence, 45 is our required answer.

Note : There is also an alternate method of solving the above question. Instead of taking common 3 from 3a3b 3c3d \left| \begin{matrix} 3a & 3b \\\ 3c & 3d \\\ \end{matrix} \right|, when we directly multiply ab cd =5\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=5by 3 two times both sides, we will get:
3×3×ab cd =3×3×5\Rightarrow 3\times 3\times \left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=3\times 3\times 5
And, as I have explained before that when we multiply any determinant by constant, then every element of a particular row or column of the determinant gets multiplied by that constant. So,
3×3×ab cd =3×3a3b cd =3a3b 3c3d \Rightarrow 3\times 3\times \left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=3\times \left| \begin{matrix} 3a & 3b \\\ c & d \\\ \end{matrix} \right|=\left| \begin{matrix} 3a & 3b \\\ 3c & 3d \\\ \end{matrix} \right|
Therefore, 3a3b 3c3d =45\left| \begin{matrix} 3a & 3b \\\ 3c & 3d \\\ \end{matrix} \right|=45.