Solveeit Logo

Question

Question: If we have a function as \[y={{\left( \sin x \right)}^{x}}\] then find the value of \[\dfrac{dy}{dx}...

If we have a function as y=(sinx)xy={{\left( \sin x \right)}^{x}} then find the value of dydx\dfrac{dy}{dx}

Explanation

Solution

We solve this problem first by applying the logarithm function on both sides to remove the power. We use the theorem that is
logab=bloga\log {{a}^{b}}=b\log a
Then we differentiate with respect to x'x' on both sides to get the value of dydx\dfrac{dy}{dx}
For finding the value of dydx\dfrac{dy}{dx} we use the product rule and chain rule.
The product rule states that if u,vu,v are some functions then
ddx(u×v)=udvdx+vdudx\dfrac{d}{dx}\left( u\times v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}
The chain rule says that
ddx(f(g(x)))=f(g(x)).g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right).{g}'\left( x \right)

Complete step by step solution:
We are given that the equation of x,yx,y as
y=(sinx)xy={{\left( \sin x \right)}^{x}}
Now, let us apply logarithm function on both sides then we get
logy=log(sinx)x\Rightarrow \log y=\log {{\left( \sin x \right)}^{x}}
We know that the theorem of logarithm that is
logab=bloga\log {{a}^{b}}=b\log a

By using this theorem in above equation we get
logy=xlog(sinx)\Rightarrow \log y=x\log \left( \sin x \right)
Now, by differentiating with respect to x'x' on both sides we get
ddx(logy)=ddx(x.log(sinx))\Rightarrow \dfrac{d}{dx}\left( \log y \right)=\dfrac{d}{dx}\left( x.\log \left( \sin x \right) \right)
We know that the product rule of differentiation that if u,vu,v are some functions then
ddx(u×v)=udvdx+vdudx\dfrac{d}{dx}\left( u\times v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}
By using the product rule in above equation we get
ddx(logy)=x.ddx(log(sinx))+log(sinx)dxdx.......equation(i)\Rightarrow \dfrac{d}{dx}\left( \log y \right)=x.\dfrac{d}{dx}\left( \log \left( \sin x \right) \right)+\log \left( \sin x \right)\dfrac{dx}{dx}.......equation(i)
We know that the standard formula of differentiation that is
ddx(logx)=1x\Rightarrow \dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}
We also know that the chain rule of differentiation that is
ddx(f(g(x)))=f(g(x)).g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right).{g}'\left( x \right)
By using the chain rule and the standard formula of differentiation in equation (i) we get
1ydydx=x(1sinxddx(sinx))+log(sinx)\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\left( \dfrac{1}{\sin x}\dfrac{d}{dx}\left( \sin x \right) \right)+\log \left( \sin x \right)
We know that the standard formula of differentiation that is
ddx(sinx)=cosx\Rightarrow \dfrac{d}{dx}\left( \sin x \right)=\cos x
By using the this result above equation we get
dydx=y[xsinx(cosx)+log(sinx)]\Rightarrow \dfrac{dy}{dx}=y\left[ \dfrac{x}{\sin x}\left( \cos x \right)+\log \left( \sin x \right) \right]
Now, by substituting y=(sinx)xy={{\left( \sin x \right)}^{x}} in above equation we get
dydx=(sinx)x[xcotx+log(sinx)]\Rightarrow \dfrac{dy}{dx}={{\left( \sin x \right)}^{x}}\left[ x\cot x+\log \left( \sin x \right) \right]
Therefore the value of dydx\dfrac{dy}{dx} is given as
dydx=(sinx)x[xcotx+log(sinx)]\therefore \dfrac{dy}{dx}={{\left( \sin x \right)}^{x}}\left[ x\cot x+\log \left( \sin x \right) \right]

Note: We can solve this problem in another method.
We are given that the equation of x,yx,y as
y=(sinx)xy={{\left( \sin x \right)}^{x}}
Now, by differentiating with respect to x'x' on both sides we get
dydx=ddx[(sinx)x]\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ {{\left( \sin x \right)}^{x}} \right]
If u,vu,v are the two functions then the general formula of differentiation is given as
ddx(uv)=ddx(uv assuming u as constant)+ddx(uv assuming v as constant)\dfrac{d}{dx}\left( {{u}^{v}} \right)=\dfrac{d}{dx}\left( {{u}^{v}}\text{ assuming }u\text{ as constant} \right)+\dfrac{d}{dx}\left( {{u}^{v}}\text{ assuming }v\text{ as constant} \right)
By using the above formula we get
dydx=ddx((sinx)xassuming sinx as constant)+ddx((sinx)xassuming x as constant)\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{\left( \sin x \right)}^{x}}\text{assuming }\sin x\text{ as constant} \right)+\dfrac{d}{dx}\left( {{\left( \sin x \right)}^{x}}\text{assuming }x\text{ as constant} \right)
Now we know that the general formula of differentiation that is
ddx(ax)=axloga\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\log a Where a'a' is constant.
By using this formula and chain rule to above equation we get

& \Rightarrow \dfrac{dy}{dx}={{\left( \sin x \right)}^{x}}\log \left( \sin x \right)+x.{{\left( \sin x \right)}^{x-1}}.\cos x \\\ & \Rightarrow \dfrac{dy}{dx}={{\left( \sin x \right)}^{x}}\log \left( \sin x \right)+x.{{\left( \sin x \right)}^{x}}.\cot x \\\ \end{aligned}$$ Therefore, by taking the common term out we get $$\therefore \dfrac{dy}{dx}={{\left( \sin x \right)}^{x}}\left[ x\cot x+\log \left( \sin x \right) \right]$$