Solveeit Logo

Question

Question: If we have a function as \[{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \righ...

If we have a function as (cosx)(cosx)(cosx).....{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}, then dydx\dfrac{dy}{dx} is equal to
(a) y2tanx1yln(cosx)-\dfrac{{{y}^{2}}\tan x}{1-y\ln \left( \cos x \right)}
(b) y2tanx1+yln(cosx)\dfrac{{{y}^{2}}\tan x}{1+y\ln \left( \cos x \right)}
(c) y2tanx1yln(sinx)\dfrac{{{y}^{2}}\tan x}{1-y\ln \left( \sin x \right)}
(d) y2sinx1+yln(sinx)\dfrac{{{y}^{2}}\sin x}{1+y\ln \left( \sin x \right)}

Explanation

Solution

Take natural log, i.e. log to the base ‘e’, on both sides of the expression y. Write the expression as lny=yln(cosx)\ln y=y\ln \left( \cos x \right) by using the formula: - lnam=mlna\ln {{a}^{m}}=m\ln a. Now, differentiate both sides of the function and use the formula: - dlnydx=1y(dydx)\dfrac{d\ln y}{dx}=\dfrac{1}{y}\left( \dfrac{dy}{dx} \right) on the left-hand side. One the right-hand side apply product rule for differentiation given as: - d(u×v)dx=v×dudx+u×dvdx\dfrac{d\left( u\times v \right)}{dx}=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}, where u and v are the functions. Simplify the expression and find the value of dydx\dfrac{dy}{dx}.

Complete step-by-step solution
We have been provided with the expression: -
y=(cosx)(cosx)(cosx).....\Rightarrow y={{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}} - (1)
This is an infinite series, so on taking natural log (log to the base ‘e’) on both sides, we get,
lny=ln(cosx)(cosx)(cosx).....\Rightarrow \ln y=\ln {{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}
Applying the formula: - lnam=mlna\ln {{a}^{m}}=m\ln a, we get,
lny=(cosx)(cosx)(cosx).....ln(cosx)\Rightarrow \ln y={{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\ln \left( \cos x \right)
Using equation (1), we can write the above expression as: -
lny=yln(cosx)\Rightarrow \ln y=y\ln \left( \cos x \right)
Now, differentiating both sides with respect to x, we get,
d[lny]dx=d(yln(cosx))dx\Rightarrow \dfrac{d\left[ \ln y \right]}{dx}=\dfrac{d\left( y\ln \left( \cos x \right) \right)}{dx}
In the R.H.S, we have a product of two functions y and ln(cosx)\ln \left( \cos x \right). Assuming them as u and v respectively, we will get the differential of the form: -
d(lny)dx=d(u×v)dx\Rightarrow \dfrac{d\left( \ln y \right)}{dx}=\dfrac{d\left( u\times v \right)}{dx}
Applying the product rule for differentiation given as: - d(u×v)dx=v×dudx+u×dvdx\dfrac{d\left( u\times v \right)}{dx}=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}, we get,
1y(dydx)=v×dudx+u×dvdx\Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}
Substituting the assumed values of u and v, we get,
1y(dydx)=ln(cosx)×dydx+y×dln(cosx)dx\Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\ln \left( \cos x \right)\times \dfrac{dy}{dx}+y\times \dfrac{d\ln \left( \cos x \right)}{dx}
Applying the chain rule for the term, dln(cosx)dx\dfrac{d\ln \left( \cos x \right)}{dx}, we have,

& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\ln \left( \cos x \right)\times \dfrac{dy}{dx}+y\times \dfrac{d\ln \left( \cos x \right)}{d\cos x}\times \dfrac{d\cos x}{dx} \\\ & \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)+y\times \dfrac{1}{\cos x}\times \left( -\sin x \right) \\\ & \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)-y\left( \dfrac{\sin x}{\cos x} \right) \\\ \end{aligned}$$ Applying the conversion, $$\dfrac{\sin \theta }{\cos \theta }=\tan \theta $$, we get, $$\begin{aligned} & \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)-y\tan x \\\ & \Rightarrow {y}\tan x=\dfrac{dy}{dx}\ln \left( \cos x \right)-\dfrac{1}{y}\left( \dfrac{dy}{dx} \right) \\\ \end{aligned}$$ Taking $$\left( \dfrac{dy}{dx} \right)$$ common in the R.H.S, we get, $$\Rightarrow {y}\tan x=\dfrac{dy}{dx}\left[ \ln \left( \cos x \right)-\dfrac{1}{y} \right]$$ $$\Rightarrow {y}\tan x=\dfrac{dy}{dx}\left[ \dfrac{y\ln \left( \cos x \right)-1}{y} \right]$$ By cross – multiplication, we get, $$\begin{aligned} & \Rightarrow \dfrac{dy}{dx}=\dfrac{{{y}^{2}}\tan x}{y\ln \left( \cos x \right)-1} \\\ & \Rightarrow \dfrac{dy}{dx}=-\dfrac{{{y}^{2}}\tan x}{1-y\ln \left( \cos x \right)} \\\ \end{aligned}$$ **Hence, option (a) is the correct answer.** **Note:** One must remember how to convert an infinite series into a simple form because we will not be able to solve the question without using the above process. You can also write the function as, $$y={{\left( \cos x \right)}^{y}}$$ but then also when we take the log on both sides, we will get the same expression. You have to take all the terms of $$\dfrac{dy}{dx}$$ at one side and then take $$\dfrac{dy}{dx}$$ common from them because if any of the term containing $$\dfrac{dy}{dx}$$ is left then we will get the answer in terms of $$\dfrac{dy}{dx}$$, which will not be a simplified form.