Solveeit Logo

Question

Question: If we have a function as \[f(x)=\sin (\log x)\] and \[y=f\left( \dfrac{2x+3}{3-2x} \right)\], then \...

If we have a function as f(x)=sin(logx)f(x)=\sin (\log x) and y=f(2x+332x)y=f\left( \dfrac{2x+3}{3-2x} \right), then dydx\dfrac{dy}{dx} is

& (A)\sin \left( \log x \right).\dfrac{1}{x\log x} \\\ & \left( B \right)\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}} \\\ & \left( C \right)\sin \left[ \log \left( \dfrac{2x+3}{3-2x} \right) \right] \\\ & \left( D \right)\sin (\log x) \\\ \end{aligned}$$
Explanation

Solution

To solve this problem, we will need to know the differentiation of composite functions of the form y=f(g(x))y=f\left( g\left( x \right) \right). The derivative of the composite functions dydx\dfrac{dy}{dx} is evaluated as y=df(g(x))d(g(x))×dg(x)dxy=\dfrac{df\left( g\left( x \right) \right)}{d\left( g\left( x \right) \right)}\times \dfrac{dg\left( x \right)}{dx}. For this problem, we have the composite function of three different functions. We will use a similar method to differentiate it.

Complete step-by-step solution:
We are given that f(x)=sin(logx)f(x)=\sin (\log x) and y=f(2x+332x)y=f\left( \dfrac{2x+3}{3-2x} \right), we are asked to evaluate dydx\dfrac{dy}{dx}. We get the expression for y as, y=sin(log(2x+332x))y=\sin \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right). As we can see that y is a composite function of the form f(g(h(x)))f\left( g\left( h\left( x \right) \right) \right). Here, f(x)=sinxf\left( x \right)=\sin x, g(x)=logx&h(x)=2x+332xg\left( x \right)=\log x \And h\left( x \right)=\dfrac{2x+3}{3-2x}.
As we know that the derivative of sinx\sin x with respect to x is cosx\cos x. Thus, the derivatives of f(g(h(x)))f\left( g\left( h\left( x \right) \right) \right) with respect to g(h(x))g\left( h\left( x \right) \right) is df(g(h(x)))dg(h(x))=cos(log(2x+332x))\dfrac{df\left( g\left( h\left( x \right) \right) \right)}{dg\left( h\left( x \right) \right)}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right).
The derivative of logx\log x with respect to x is 1x\dfrac{1}{x}. Thus, the derivative of g(h(x))g\left( h\left( x \right) \right) with respect to h(x)h\left( x \right) is dg(h(x))dh(x)=12x+332x=32x2x+3\dfrac{dg\left( h\left( x \right) \right)}{dh\left( x \right)}=\dfrac{1}{\dfrac{2x+3}{3-2x}}=\dfrac{3-2x}{2x+3}
The derivative of 32x2x+3\dfrac{3-2x}{2x+3} with respect to x is dh(x)dx=2(32x)(2)(2x+3)(32x)2\dfrac{dh(x)}{dx}=\dfrac{2(3-2x)-(-2)(2x+3)}{{{\left( 3-2x \right)}^{2}}}, simplifying this expression, we get dh(x)dx=12(32x)2\dfrac{dh(x)}{dx}=\dfrac{12}{{{\left( 3-2x \right)}^{2}}}
Using the derivative of a composite function, we can differentiate the function y=sin(log(2x+332x))y=\sin \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right) as,
dydx=df(g(h(x)))dg(h(x))×dg(h(x))dh(x)×dh(x)dx\dfrac{dy}{dx}=\dfrac{df\left( g\left( h\left( x \right) \right) \right)}{dg\left( h\left( x \right) \right)}\times \dfrac{dg\left( h\left( x \right) \right)}{dh\left( x \right)}\times \dfrac{dh(x)}{dx}
Substituting the values of the derivatives in the above expression, we get
dydx=cos(log(2x+332x))×32x2x+3×12(32x)2\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\times \dfrac{3-2x}{2x+3}\times \dfrac{12}{{{\left( 3-2x \right)}^{2}}}
Simplifying the above expression, we get
dydx=cos(log(2x+332x))12(32x)(2x+3)\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{\left( 3-2x \right)\left( 2x+3 \right)}
dydx=cos(log(2x+332x))1294x2\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}}
Thus, the derivative of the given expression is dydx=cos(log(2x+332x))1294x2\dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}}.
Hence, the answer is an option (B)\left( B \right).

Note: We can use this method to find the derivative of a composite function having more functions than this. In general words, y=f(g(h(......(x))))y=f\left( g(h(......(x))) \right) can be differentiated by differentiating the function outside with respect to the function inside it.