Solveeit Logo

Question

Question: If we have a function as \[f(x) = \dfrac{{{5^x} + {5^{ - x}} - 2}}{{{x^2}}}\] , for \[x \ne 0\] ...

If we have a function as f(x)=5x+5x2x2f(x) = \dfrac{{{5^x} + {5^{ - x}} - 2}}{{{x^2}}} , for x0x \ne 0
=k= k, for x=0
Is continuous at x=0 find k.

Explanation

Solution

A function f(x) is said to be continuous at x=a, if the given function is defined at x=a and if the value of the given function at x=a is equal to the limit of the given function at x=a i.e. limxaf(x)=f(a)\mathop {\lim }\limits_{x \to a} f(x) = f(a). If these conditions are not followed then we say that the given function is discontinuous at x=a.

Complete step-by-step solution:
Step 1: According to the question it is given that the given function f(x) is continuous at x=0, so we should have a finite value of the given function at x=0 and in the question, it is provided that
At x=0, f(0)=kf(0) = k
Since the given function f(x) is continuous at x=0 so we can say that the value of the given function at x=0 is equal to the limit of the given function at x=0 i.e.
limx0f(0)=f(0)\mathop {\lim }\limits_{x \to 0} f(0) = f(0)
Step 2: Now according to the continuity conditions we have,
limx0f(0)=f(0)\mathop {\lim }\limits_{x \to 0} f(0) = f(0)&f(0)=kf(0) = k
limx0f(0)=f(0)=k\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = f(0) = k
According to the question,
f(x)=5x+5x2x2f(x) = \dfrac{{{5^x} + {5^{ - x}} - 2}}{{{x^2}}}
limx0f(0)=limx05x+5x2x2\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{5^x} + {5^{ - x}} - 2}}{{{x^2}}}
By rearranging the terms we further proceed as,
limx0f(0)=limx05x+15x2x2\mathop {\lim }\limits_{x \to 0} f(0) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{5^x} + \dfrac{1}{{{5^x}}} - 2}}{{{x^2}}}
limx0f(0)=limx0(5x)2+12(5x)x2\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{({5^x})}^2} + 1 - 2({5^x})}}{{{x^2}}}
As we know from the concept of a quadratic equation that, a22ab+b2=(ab)2{a^2} - 2ab + {b^2} = {(a - b)^2} , so we have
limx0f(0)=limx0(5x1)25xx2\mathop {\lim }\limits_{x \to 0} f(0) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{({5^x} - 1)}^2}}}{{{5^x} \cdot {x^2}}}
limx0f(0)=limx0(5x1x)215x\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{{5^x} - 1}}{x}} \right)^2} \cdot \dfrac{1}{{{5^x}}}
limx0f(0)=limx0(5x1x)2×limx015x\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{{5^x} - 1}}{x}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{5^x}}}
Step 3: From the limit of exponential functions we know that
limx0ax1x=lna(a>0)\mathop {\lim }\limits_{x \to 0} \dfrac{{{a^x} - 1}}{x} = \ln a(a > 0)
From the above expression, we can write
limx0f(0)=limx0(5x1x)2×limx015x\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{{5^x} - 1}}{x}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{5^x}}}
limx0f(0)=(log5)2×limx015x\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = {(\log 5)^2} \times \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{5^x}}}
Takingx0x \to 0, we get
limx0f(0)=(log5)2×150\mathop {\lim }\limits_{x \to 0} f(0) = {(\log 5)^2} \times \dfrac{1}{{{5^0}}}
limx0f(0)=(log5)2×1\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = {(\log 5)^2} \times 1
limx0f(0)=(log5)2\Rightarrow \mathop {\lim }\limits_{x \to 0} f(0) = {(\log 5)^2}
According to the question, limx0f(0)=f(0)=k\mathop {\lim }\limits_{x \to 0} f(0) = f(0) = k
k=(log5)2k = {(\log 5)^2}
Hence, the value of k is equal to (log5)2{(\log 5)^2}.

Note: A given function is said to be discontinuous when,

The limit does not exist, that is
limxaf(x)limxa+f(x)\mathop {\lim }\limits_{x \to {a^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {a^ + }} f(x)
F(x) is not defined at x=0
limxaf(x)f(a)\mathop {\lim }\limits_{x \to a} f(x) \ne f(a)
Geometrically, the graph of the function will exhibit a break at x=a, if the function is discontinuous at x=a.