Solveeit Logo

Question

Question: If we have a function as \(f\left( x \right)=\int{\dfrac{\ln x}{1+x}dx}\) then \(f\left( x \right)+f...

If we have a function as f(x)=lnx1+xdxf\left( x \right)=\int{\dfrac{\ln x}{1+x}dx} then f(x)+f(1x)=f\left( x \right)+f\left( \dfrac{1}{x} \right)=
(a)(lnx)2+c (b)12(lnx)2+c (c)12(xlnx)2+c (d)None of these \begin{aligned} & \left( a \right){{\left( \ln x \right)}^{2}}+c \\\ & \left( b \right)\dfrac{1}{2}{{\left( \ln x \right)}^{2}}+c \\\ & \left( c \right)\dfrac{1}{2}{{\left( x\ln x \right)}^{2}}+c \\\ & \left( d \right)None~of~these \\\ \end{aligned}

Explanation

Solution

In this question, we will first find f(1x)f\left( \dfrac{1}{x} \right) using substitution in f(x)f\left( x \right). Then we will add both f(x)f\left( x \right) and f(1x)f\left( \dfrac{1}{x} \right) to get simple expression. Then we will evaluate the integral using substitution again and hence find our answer. Only basic integration formula xndx=xn+1n+1+c\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}+c will be used in this question.

Complete step-by-step solution
We are given f(x)=lnx1+xdx....................(1)f\left( x \right)=\int{\dfrac{\ln x}{1+x}dx}....................(1)
We need to find f(1x)f\left( \dfrac{1}{x} \right). So we will first consider integral in terms of variable tt to avoid confusion.
f(t)=lnt1+tdt.....................(2)f\left( t \right)=\int{\dfrac{\ln t}{1+t}dt}.....................(2)
To find the value of f(1x)f\left( \dfrac{1}{x} \right), let us substitute the value of 1x\dfrac{1}{x} by tt.
1x=t....................(3)\therefore \dfrac{1}{x}=t....................(3)
Taking derivative both sides, we get –
1x2dx=dt....................(4)-\dfrac{1}{{{x}^{2}}}dx=dt....................(4)
Putting (3) and (4) in equation (2), we get –
f(1x)=ln1x1+1x(1x2)dxf\left( \dfrac{1}{x} \right)=\int{\dfrac{\ln \dfrac{1}{x}}{1+\dfrac{1}{x}}}\left( -\dfrac{1}{{{x}^{2}}} \right)dx
Taking LCM in denominator and simplifying, we get –
f(1x)=ln1x.x1+x(1x2)dxf\left( \dfrac{1}{x} \right)=\int{\dfrac{\ln \dfrac{1}{x}.x}{1+x}}\left( -\dfrac{1}{{{x}^{2}}} \right)dx
As we know, ln1x=lnx\ln \dfrac{1}{x}=-\ln x. Hence, we get –
f(1x)=lnx1+x(1x)dx f(1x)=lnxx(1+x)dx.......................(5) \begin{aligned} & f\left( \dfrac{1}{x} \right)=-\int{\dfrac{-\ln x}{1+x}}\left( \dfrac{1}{x} \right)dx \\\ & f\left( \dfrac{1}{x} \right)=\int{\dfrac{\ln x}{x\left( 1+x \right)}}dx.......................(5) \\\ \end{aligned}
Now adding (1) and (5), we get –
f(x)+f(1x)=lnx(1+x)dx+lnxx(1+x)dxf\left( x \right)+f\left( \dfrac{1}{x} \right)=\int{\dfrac{\ln x}{\left( 1+x \right)}}dx+\int{\dfrac{\ln x}{x\left( 1+x \right)}}dx
Combining the integral, we have –
f(x)+f(1x)=lnx(1+x)dx+lnxx(1+x)dxf\left( x \right)+f\left( \dfrac{1}{x} \right)=\int{\dfrac{\ln x}{\left( 1+x \right)}}dx+\dfrac{\ln x}{x\left( 1+x \right)}dx
Taking lnx(1+x)\dfrac{\ln x}{\left( 1+x \right)} common, we get –
f(x)+f(1x)=lnx(1+x)(1+1x)dx =lnx(1+x)(1+xx)dx =lnx(1+x)(1+xx)dx =lnxxdx......................(6) \begin{aligned} & f\left( x \right)+f\left( \dfrac{1}{x} \right)=\int{\dfrac{\ln x}{\left( 1+x \right)}}\left( 1+\dfrac{1}{x} \right)dx \\\ & =\int{\dfrac{\ln x}{\left( 1+x \right)}}\left( \dfrac{1+x}{x} \right)dx \\\ & =\int{\dfrac{\ln x}{\left( 1+x \right)}}\left( \dfrac{1+x}{x} \right)dx \\\ & =\int{\dfrac{\ln x}{x}}dx......................(6) \\\ \end{aligned}
Now we just have to evaluate this integral to find the required result. For this, we will use substitution.
Let lnx=a.......(7)\ln x=a……………………….......(7)
Differentiating both sides, we get –
1xdx=da\dfrac{1}{x}dx=da
So, equation (6) becomes a da\int{a~da}
Solving integration, we get –
a22+c\dfrac{{{a}^{2}}}{2}+c
Putting the value of aa from equation (7), we get –
(lnx)22+c\dfrac{{{\left( \ln x \right)}^{2}}}{2}+c
Hence, f(x)+f(1x)=(lnx)22+cf\left( x \right)+f\left( \dfrac{1}{x} \right)=\dfrac{{{\left( \ln x \right)}^{2}}}{2}+c. Therefore, option (b) is the correct answer.

Note: Students should be careful while substituting values to solve integral. Do not forget to change dxdx also. Also, try to combine the full equation into a single integral for solving sum easily. Do not try to solve the integral of f(x)f\left( x \right) and f(1x)f\left( \dfrac{1}{x} \right) separately and then adding. Also, don’t forget to add constant after solving integration.