Solveeit Logo

Question

Question: If we have a determinant \(f\left( x \right)=\left|\begin{matrix} x \\\ 2\lambda \\\ \end...

If we have a determinant f(x)=x 2λ  λ x f\left( x \right)=\left|\begin{matrix} x \\\ 2\lambda \\\ \end{matrix} \right.\text{ }\left. \begin{matrix} & \lambda \\\ & x \\\ \end{matrix} \right|, then f(λx)f(x)f\left( \lambda x \right)-f\left( x \right) is equal to:
(a) x(λ21)x\left( {{\lambda }^{2}}-1 \right)
(b) 2λ(x21)2\lambda \left( {{x}^{2}}-1 \right)
(c) λ2(x21){{\lambda }^{2}}\left( {{x}^{2}}-1 \right)
(d) λ(x21)\lambda \left( {{x}^{2}}-1 \right)
(e) x2(λ21){{x}^{2}}\left( {{\lambda }^{2}}-1 \right)

Explanation

Solution

Here, we can apply the property of determinant that det(λA)=λ×det(A)\det \left( \lambda A \right)=\lambda \times \text{det}\left( A \right), where A is any given matrix.

Complete step-by-step answer:
Determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformations described by the matrix. The determinant of the matrix A is denoted by det (A), det A or |A|.
The determinant tells us the things about the matrix that are useful in systems of linear equations, helps us to find the inverse of a matrix and it is useful in calculus and more.
In case of 2×22\times 2 matrix, the determinant may be defined as:
A=a c b d =adbc|A|=\left| \begin{matrix} a \\\ c \\\ \end{matrix} \right.\left. \begin{matrix} & b \\\ & d \\\ \end{matrix} \right|=ad-bc
Determinants possess many algebraic properties.
Determinant is defined only for square matrices.
Here, we are given a square matrix f(x) as:
f(x)=x 2λ  λ x f\left( x \right)=\left| \begin{matrix} x \\\ 2\lambda \\\ \end{matrix} \right.\text{ }\left. \begin{matrix} & \lambda \\\ & x \\\ \end{matrix} \right|
This is a square matrix of order 2 ×\times 2.
Now, according to the question, to get the value of a given expression that is f(λx)f(x)f\left( \lambda x \right)-f\left( x \right), we need to find the values of both the terms in this expression. So, we have;

\lambda x \\\ 2\lambda \\\ \end{matrix} \right.\text{ }\left. \begin{matrix} & \lambda \\\ & \lambda x \\\ \end{matrix} \right|$$ Since, $|\lambda A|=|{{\lambda }^{n}}|A|$, where n is the order of determinant. Therefore, $$f\left( \lambda x \right)={{\lambda }^{2}}\left| \begin{matrix} x \\\ 2 \\\ \end{matrix} \right.\text{ }\left. \begin{matrix} & 1 \\\ & x \\\ \end{matrix} \right|={{\lambda }^{2}}\left( {{x}^{2}}-2 \right)$$ And, the value of the other term is $f\left( x \right)={{x}^{2}}-2{{\lambda }^{2}}$. So, the value of the given expression will be as: $ f\left( \lambda x \right)-f\left( x \right)={{\lambda }^{2}}\left( {{x}^{2}}-2 \right)-\left( {{x}^{2}}-2{{\lambda }^{2}} \right) \\\ \Rightarrow f\left( \lambda x \right)-f\left( x \right)={{\lambda }^{2}}{{x}^{2}}-2{{\lambda }^{2}}-{{x}^{2}}+2{{\lambda }^{2}} \\\ \Rightarrow f\left( \lambda x \right)-f\left( x \right)={{x}^{2}}\left( {{\lambda }^{2}}-1 \right) \\\ $ **Hence, option (e) is the correct answer.** **Note:** Students should note the property of the determinants that we used here $\det \left( \lambda A \right)=\lambda \times \text{det}\left( A \right)$. The calculations must be done properly to avoid the unnecessary mistakes.