Solveeit Logo

Question

Question: If we given two unit vectors \(\vec{a}\text{ and }\vec{b}\) such that, \(\vec{a}+\vec{b}\) is also a...

If we given two unit vectors a and b\vec{a}\text{ and }\vec{b} such that, a+b\vec{a}+\vec{b} is also a unit vector, then find the angle between a and b\vec{a}\text{ and }\vec{b}

Explanation

Solution

To solve this question, we will use the given fact that, all the three vectors a and b and a + b\vec{a}\text{ and }\vec{b}\text{ and }\vec{a}\text{ + }\vec{b} are unit vectors. A vector is called unit vector if it has magnitude as 1. Also, if two vectors are p and q\vec{p}\text{ and }\vec{q} and angle between them is θ\theta then
pq=pqcosθ\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta
Where p\left| {\vec{p}} \right| is magnitude of p\vec{p} and q\left| {\vec{q}} \right| is magnitude of q\vec{q}
First we will use the fact that a,b and a + b\vec{a},\vec{b}\text{ and }\vec{a}\text{ + }\vec{b} are unit vectors and then we will use the formula of angle between two vectors stated above to get the answer.

Complete step-by-step solution:
Before starting the solution, let us first understand what a unit vector is. A vector is called a unit vector if the magnitude of it is 1. If a\vec{a} is a unit vector than a=1\left| a \right|=1
Magnitude of a vector is the length of a vector. A vector p=xi^+yj^+zk^\vec{p}=x\hat{i}+y\hat{j}+z\hat{k} has its magnitude as p=x2+y2+z2\left| {\vec{p}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}
Here given, a and b\vec{a}\text{ and }\vec{b} are both unit vector.
a=1 and b=1\Rightarrow \left| {\vec{a}} \right|=1\text{ and }\left| {\vec{b}} \right|=1
Also given that, a+b\vec{a}+\vec{b} is also a unit vector.
a+b=1\Rightarrow \left| \vec{a}+\vec{b} \right|=1
If a=1\left| {\vec{a}} \right|=1 then squaring both sides a2=1\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=1
Similarly, b=1b2=1\left| {\vec{b}} \right|=1\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1
And a+b=1a+b2=1\left| \vec{a}+\vec{b} \right|=1\Rightarrow {{\left| \vec{a}+\vec{b} \right|}^{2}}=1
Now, magnitude of a vector p2=pp . . . . . . . . . . . (i){{\left| {\vec{p}} \right|}^{2}}=\vec{p}\cdot \vec{p}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}
Then, applying this logic on a+b2{{\left| \vec{a}+\vec{b} \right|}^{2}} we get

& {{\left| \vec{a}+\vec{b} \right|}^{2}}=\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\\ & \Rightarrow \left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\\ \end{aligned}$$ Opening bracket of LHS of above equation: $$\left( \vec{a}\cdot \vec{a} \right)+\left( \vec{a}\cdot \vec{b} \right)+\left( \vec{b}\cdot \vec{a} \right)+\left( \vec{b}\cdot \vec{b} \right)=1$$ Now, $${{\left| {\vec{a}} \right|}^{2}}=1$$ applying logic of equation (i) $$\vec{a}\cdot \vec{a}=1$$ Similarly, $${{\left| {\vec{b}} \right|}^{2}}=1\Rightarrow \vec{b}\cdot \vec{b}=1$$ Using this both values in above equation, we get: $$\begin{aligned} & \Rightarrow 1+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}+1=1 \\\ & \Rightarrow 2+2\vec{a}\cdot \vec{b}=1 \\\ & \Rightarrow \vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} \\\ \end{aligned}$$ Subtracting 2 both sides of above equation: $$\begin{aligned} & \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=1-2 \\\ & \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=-1 \\\ \end{aligned}$$ Dividing 2 both sides of above equation: $$\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}$$ Now, finally we will use the formula of angle between two vectors which is given as: If two vectors are $\vec{p}\text{ and }\vec{q}$ then angle between them is $\theta $ then $$\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta $$ Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$ We have from equation (i) $$\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}$$ Applying formula of angle between two vectors from above, supposing angle between $\vec{a}\text{ and }\vec{b}\text{ is }\theta $ we get: $$\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =\dfrac{-1}{2}$$ Now, $$\left| {\vec{a}} \right|=\left| {\vec{b}} \right|=1\text{ as }\vec{a}\text{ and }\vec{b}$$ are unit vectors. $$\begin{aligned} & \cos \theta =\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\\ & \Rightarrow \theta \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{-1}{2} \right) \\\ \end{aligned}$$ We will use trigonometric identity as $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $ $$\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $$ From equation (ii) we have $$\cos \theta =\dfrac{-1}{2}$$ Substituting this in above: $$\begin{aligned} & \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\left( \dfrac{-1}{2} \right) \\\ & \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{1}{2} \\\ \end{aligned}$$ Now, value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$ $$\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}$$ Applying ${{\cos }^{-1}}$ both sides we get: $$\begin{aligned} & \Rightarrow {{\cos }^{-1}}\left( \cos \left( {{180}^{\circ }}-\theta \right) \right)={{\cos }^{-1}}\left( \cos {{60}^{\circ }} \right) \\\ & \Rightarrow {{180}^{\circ }}-\theta ={{60}^{\circ }} \\\ & \Rightarrow \theta ={{180}^{\circ }}-{{60}^{\circ }} \\\ & \Rightarrow \theta ={{120}^{\circ }} \\\ \end{aligned}$$ Therefore, angle $\theta $ between $\vec{a}\text{ and }\vec{b}\text{ is 12}{{\text{0}}^{\circ }}$ Hence, we have: ![](https://www.vedantu.com/question-sets/52cf9dee-bdb2-49d5-83f3-9c5dc05bf9d92276007144296929679.png) **Where, $$OP=\vec{a}\text{ and OQ=}\vec{b}$$** **Note:** Solution can also end at a point where we got $$\cos \theta =\dfrac{-1}{2}$$ by general trigonometric knowledge we have, that $$\cos {{120}^{\circ }}=\dfrac{-1}{2}$$ so, we can directly get $$\theta ={{120}^{\circ }}$$ but for more precise solution, we can also proceed by using trigonometric formula $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $