Solveeit Logo

Question

Question: If we consider only the principle values of the inverse trigonometric functions, then the values of ...

If we consider only the principle values of the inverse trigonometric functions, then the values of tan(cos1152sin1417)\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) is
A) 293\sqrt {\dfrac{{29}}{3}}
B) 293\dfrac{{29}}{3}
C) 329\sqrt {\dfrac{3}{{29}}}
D) 329\dfrac{3}{{29}}

Explanation

Solution

Firstly, convert cos1152{\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} and sin1417{\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} in the terms of tan1{\tan ^{ - 1}}.
After that, substitute the values in terms of tan1{\tan ^{ - 1}} , apply the property tan1atan1b=tan1(ab1+ab){\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right).
Thus, get the answer and choose the correct option.

Complete step by step solution:
We are given that tan(cos1152sin1417)\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) .
To solve it, first we have to convert cos1152{\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} and sin1417{\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} in the terms of tan1{\tan ^{ - 1}} .

cos1152=tan1(52)2(1)21 =tan15011 =tan149 =tan17 {\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} = {\tan ^{ - 1}}\dfrac{{\sqrt {{{\left( {5\sqrt 2 } \right)}^2} - {{\left( 1 \right)}^2}} }}{1} \\\ = {\tan ^{ - 1}}\dfrac{{\sqrt {50 - 1} }}{1} \\\ = {\tan ^{ - 1}}\sqrt {49} \\\ = {\tan ^{ - 1}}7

And
sin1417=tan14(17)2(4)2 =tan141716 =tan141 =tan14 {\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} = {\tan ^{ - 1}}\dfrac{4}{{\sqrt {{{\left( {\sqrt {17} } \right)}^2} - {{\left( 4 \right)}^2}} }} \\\ = {\tan ^{ - 1}}\dfrac{4}{{\sqrt {17 - 16} }} \\\ = {\tan ^{ - 1}}\dfrac{4}{{\sqrt 1 }} \\\ = {\tan ^{ - 1}}4
Now, substituting cos1152=tan17{\cos ^{ - 1}}\dfrac{1}{{5\sqrt 2 }} = {\tan ^{ - 1}}7 and sin1417=tan14{\sin ^{ - 1}}\dfrac{4}{{\sqrt {17} }} = {\tan ^{ - 1}}4 in tan(cos1152sin1417)\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) .
tan(cos1152sin1417)=tan(tan17tan14)\therefore \tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) = \tan \left( {{{\tan }^{ - 1}}7 - {{\tan }^{ - 1}}4} \right)
Then, applying the property tan1atan1b=tan1(ab1+ab){\tan ^{ - 1}}a - {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right) .
tan(tan17tan14)=tan(tan1(741+7×4))\therefore \tan \left( {{{\tan }^{ - 1}}7 - {{\tan }^{ - 1}}4} \right) = \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{{7 - 4}}{{1 + 7 \times 4}}} \right)} \right)
=tan(tan1(31+28)) =tan(tan1(329)) =329  = \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{{1 + 28}}} \right)} \right) \\\ = \tan \left( {{{\tan }^{ - 1}}\left( {\dfrac{3}{{29}}} \right)} \right) \\\ = \dfrac{3}{{29}} \\\
Thus, tan(cos1152sin1417)=329\tan \left( {{{\cos }^{ - 1}}\dfrac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\dfrac{4}{{\sqrt {17} }}} \right) = \dfrac{3}{{29}} .

So, option (D) is correct.

Note:
Some properties of inverse trigonometric tan functions:

\tan \left( {{{\tan }^{ - 1}}x} \right) = x, - \infty \leqslant x \leqslant \infty \\\ {\tan ^{ - 1}}\left( {\tan x} \right) = x, - \dfrac{\pi }{2} \leqslant x \leqslant \dfrac{\pi }{2} \\\ {\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x \\\ {\tan ^{ - 1}}x + {\cot ^{ - 1}}x = 1 \\\ {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \left\\{ {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right),xy < 1 \\\ \pi + {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right),xy > 1 \\\ \right. \\\ {\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) \\\