Question
Question: If we consider only the principle values of the inverse trigonometric functions, then the values of ...
If we consider only the principle values of the inverse trigonometric functions, then the values of tan(cos−1521−sin−1174) is
A) 329
B) 329
C) 293
D) 293
Solution
Firstly, convert cos−1521 and sin−1174 in the terms of tan−1.
After that, substitute the values in terms of tan−1 , apply the property tan−1a−tan−1b=tan−1(1+aba−b).
Thus, get the answer and choose the correct option.
Complete step by step solution:
We are given that tan(cos−1521−sin−1174) .
To solve it, first we have to convert cos−1521 and sin−1174 in the terms of tan−1 .
And
sin−1174=tan−1(17)2−(4)24 =tan−117−164 =tan−114 =tan−14
Now, substituting cos−1521=tan−17 and sin−1174=tan−14 in tan(cos−1521−sin−1174) .
∴tan(cos−1521−sin−1174)=tan(tan−17−tan−14)
Then, applying the property tan−1a−tan−1b=tan−1(1+aba−b) .
∴tan(tan−17−tan−14)=tan(tan−1(1+7×47−4))
=tan(tan−1(1+283)) =tan(tan−1(293)) =293
Thus, tan(cos−1521−sin−1174)=293 .
So, option (D) is correct.
Note:
Some properties of inverse trigonometric tan functions: