Solveeit Logo

Question

Question: If we consider only the principal values of the inverse trigonometric functions, then the value of \...

If we consider only the principal values of the inverse trigonometric functions, then the value of tan[cos112sin1417]\tan \left[ {{\cos }^{-1}}\dfrac{1}{\sqrt{2}}-{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} \right] is: -
(a) 293\dfrac{\sqrt{29}}{3}
(b) 293\dfrac{29}{3}
(c) 329\dfrac{\sqrt{3}}{29}
(d) 35\dfrac{-3}{5}

Explanation

Solution

Convert cos112{{\cos }^{-1}}\dfrac{1}{\sqrt{2}} into tan1{{\tan }^{-1}} function by assuming 1 as base and 2\sqrt{2} as hypotenuse. Also convert sin1417{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} into tan1{{\tan }^{-1}} function by assuming 4 as perpendicular and 17\sqrt{17} as hypotenuse. Use Pythagoras theorem given by: - h2=p2+b2{{h}^{2}}={{p}^{2}}+{{b}^{2}} for the above two process. Here, h = hypotenuse, p = perpendicular and b = base. Now, apply the identity: - tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) to simplify. Finally apply the rule: - tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x to get the answer.

Complete step-by-step solution
We have been provided with the expression: -
E=tan[cos112sin1417]\Rightarrow E=\tan \left[ {{\cos }^{-1}}\dfrac{1}{\sqrt{2}}-{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} \right]
Let us consider cos1{{\cos }^{-1}} and sin1{{\sin }^{-1}} functions into tan1{{\tan }^{-1}} function.
We know that, cosθ\cos \theta = BaseHypotenuse\dfrac{\text{Base}}{\text{Hypotenuse}} \Rightarrow \theta ={{\cos }^{-1}}$$$(\dfrac{\text{Base}}{\text{Hypotenuse}})$ On comparing the above relation with {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right),weget,base=1,hypotenuse=, we get, base = 1, hypotenuse = \sqrt{2}.Therefore,applyingPythagorastheorem,weget,. Therefore, applying Pythagoras theorem, we get, {{h}^{2}}={{p}^{2}}+{{b}^{2}}$$, where h = hypotenuse, p = perpendicular and b = base.

& \Rightarrow {{\left( \sqrt{2} \right)}^{2}}={{p}^{2}}+{{1}^{2}} \\\ & \Rightarrow 2={{p}^{2}}+1 \\\ & \Rightarrow {{p}^{2}}=1 \\\ & \Rightarrow p=1 \\\ \end{aligned}$$ Hence, $${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{1}{1} \right)={{\tan }^{-1}}1$$. Now, we know that, $$\sin \theta =\dfrac{p}{h}\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{p}{h} \right)$$. On comparing the above relation with $${{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)$$, we have, p = 4, h = $$\sqrt{17}$$. Therefore, applying Pythagoras theorem, we get, $$\begin{aligned} & \Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\\ & \Rightarrow {{\left( \sqrt{17} \right)}^{2}}={{4}^{2}}+{{b}^{2}} \\\ & \Rightarrow 17=16+{{b}^{2}} \\\ & \Rightarrow {{b}^{2}}=1 \\\ & \Rightarrow b=1 \\\ \end{aligned}$$ Hence, $${{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{4}{1} \right)={{\tan }^{-1}}4$$. So, the expression becomes: - $$\Rightarrow E=\tan \left[ {{\tan }^{-1}}1-{{\tan }^{-1}}4 \right]$$ Applying the identity: - $${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$$, we get, $$\begin{aligned} & \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{1-4}{1+1\times 4} \right) \right] \\\ & \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{-3}{5} \right) \right] \\\ \end{aligned}$$ Finally using the identity, $$\tan \left[ {{\tan }^{-1}}x \right]=x$$, we have, $$\Rightarrow E=\dfrac{-3}{5}$$ **Hence, option (d) is the correct answer.** **Note:** One may note that we can decrease the steps of solution a little by directly saying that $${{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}1$$. Here, we knew that $${{\cos }^{-1}}\left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$$. So, $$\dfrac{\pi }{4}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)$$. Hence, the angle was $$\dfrac{\pi }{4}$$ and $$\tan \left( \dfrac{\pi }{4} \right)=1$$. So, we did not required Pythagoras theorem here. But for the conversion of $${{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)$$ into $${{\tan }^{-1}}$$ function we needed Pythagoras theorem because we don’t know any particular angle for that.