Solveeit Logo

Question

Question: If we are given \(x\ne \dfrac{n\pi }{2}\) and \({{\left| \cos x \right|}^{-{{\sin }^{2}}x-3\sin x+2}...

If we are given xnπ2x\ne \dfrac{n\pi }{2} and cosxsin2x3sinx+2=1{{\left| \cos x \right|}^{-{{\sin }^{2}}x-3\sin x+2}}=1 then all the solutions of x are given by
(a) 2nπ+π22n\pi +\dfrac{\pi }{2}
(b) (2n+1)ππ2\left( 2n+1 \right)\pi -\dfrac{\pi }{2}
(c) nπ+(1)nπ2n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{2}
(d) None of these

Explanation

Solution

To find the value of x for which cosxsin2x3sinx+2=1{{\left| \cos x \right|}^{-{{\sin }^{2}}x-3\sin x+2}}=1 , we can first take log\log of the whole expression and then two cases will arise that we need to consider:

  1. When cosx=±1\cos x=\pm 1
  2. When sin2x3sinx+2=0-{{\sin }^{2}}x-3\sin x+2=0
    After that, we have to combine the values of x for which the above two conditions are satisfied and we will get our final answer.

Complete step-by-step solution:
According to question,
cosxsin2x3sinx+2=1{{\left| \cos x \right|}^{-{{\sin }^{2}}x-3\sin x+2}}=1
Taking log\log of the above equation, we get
log(cosxsin2x3sinx+2)=log1 logmn=nlogm,log1=0 (sin2x3sinx+2)log(cosx)=0 \begin{aligned} & \Rightarrow \log \left( {{\left| \cos x \right|}^{-{{\sin }^{2}}x-3\sin x+2}} \right)=\log 1 \\\ & \because \log {{m}^{n}}=n\log m,\log 1=0 \\\ & \Rightarrow \left( -{{\sin }^{2}}x-3\sin x+2 \right)\log \left( \left| \cos x \right| \right)=0 \\\ \end{aligned}
So, either we can have sin2x3sinx+2=0-{{\sin }^{2}}x-3\sin x+2=0 or log(cosx)=0\log \left( \left| \cos x \right| \right)=0
We will first consider case 1 i.e.
log(cosx)=0\log \left( \left| \cos x \right| \right)=0
cosx=±1\Rightarrow \cos x=\pm 1
The above equation is satisfied when we put an integral multiple of π\pi in place of x.
x=nπ\Rightarrow x=n\pi
Now considering the second case i.e.
sin2x3sinx+2=0 sin2x+3sinx2=0 \begin{aligned} & -{{\sin }^{2}}x-3\sin x+2=0 \\\ & \Rightarrow {{\sin }^{2}}x+3\sin x-2=0 \\\ \end{aligned}
We know that the quadratic formula for equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 is x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} .
Now, here we have x=sinx,a=1,b=3,c=2x=\sin x,a=1,b=3,c=-2 . Applying quadratic formula to solve the equation, we get
sinx=3±324×(2)2 sinx=3±9+82 sinx=3±172 sinx=3.56 or 0.56 \begin{aligned} & \Rightarrow \sin x=\dfrac{-3\pm \sqrt{{{3}^{2}}-4\times \left( -2 \right)}}{2} \\\ & \Rightarrow \sin x=\dfrac{-3\pm \sqrt{9+8}}{2} \\\ & \Rightarrow \sin x=\dfrac{-3\pm \sqrt{17}}{2} \\\ & \Rightarrow \sin x=-3.56\text{ or }0.56 \\\ \end{aligned}
Since the value of sinx\sin x is always between -1 and 1, therefore sinx=3.56\sin x=-3.56 is rejected.
We know that the general solution of sinx=siny\sin x=\sin y is given as
x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y
Now the value of x which satisfies sinx=0.56\sin x=0.56 can be given by
x=nπ+(1)nsin1(0.56)\Rightarrow x=n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( 0.56 \right)
Here we have taken siny=0.56\sin y=0.56 which makes y=sin1(0.56)y={{\sin }^{-1}}\left( 0.56 \right). We will use the result \left\\{ {{\sin }^{-1}}\left( 0.56 \right) \right.=0.582 .
x=nπ+(1)n0.582\Rightarrow x=n\pi +{{\left( -1 \right)}^{n}}0.582
Combining the values of x for both the cases, we get
x=nπ or x=nπ+(1)n0.582\Rightarrow x=n\pi \text{ or }x=n\pi +{{\left( -1 \right)}^{n}}0.582
Since the answer doesn’t match with any of the option given to us.
Therefore, option (d) is the correct option.

Note: Instead of taking log\log , we could have used the fact that 1n=1{{1}^{n}}=1 and a0=1{{a}^{0}}=1 . By comparing the expression with these we could have saved some of our time in solving the question. Sometimes you should try putting options in the expression in order to get the answer quickly or to verify the answer you got, this way you can be more accurate.