Question
Question: If we are given two expression as \(x=\dfrac{{{\sin }^{3}}t}{\sqrt{\cos 2t}},y=\dfrac{{{\cos }^{3}}t...
If we are given two expression as x=cos2tsin3t,y=cos2tcos3t then find dxdy.
Solution
In this question, we are given values of x and y in terms of parameter t and we need to find the value of dxdy. For this, we will differentiate x and y separately with respect to t and then use dxdy=dtdy⋅dxdt=dtdxdtdy to find the value of dxdy. We will use the following rules of differentiation.
(i) Quotient rule on any two functions u and v given by (vu)l=v2u′v−v′u
(ii) dtd(cosnt)=ncosn−1tdtd(cost)=−ncosn−1tsint.
(iii) dtd(sinnt)=nsinn−1tdtd(sint)=nsinn−1tcost.
(iv) sintcost=cott.
(v) 1+cos2t=2cos2t.
(vi) cos3t=4cos3t−3cost.
(vii) sin3t=3sint−4sin3t.
(viii) sin2t=2costcost.
Complete step-by-step solution
Here we are given the value of x in terms of t as x=cos2tsin3t and value of y in terms of t as y=cos2tcos3t.
We need to find the value of dxdy.
We can write dxdy as,
dxdy=dxdy×dtdt⇒dxdy=dtdy×dxdt
It can also be written as,
dxdy=dtdxdtdy.
So we just need to find the value of dtdy and dtdx.
Now, x function is given as x=cos2tsin3t.
Differentiating x with respect to t, we get: dtdx=dtd(cos2tsin3t)
As we know according to quotient rule (vu)l=v2u′v−v′u so applying we get:
⇒dtdx=(cos2t)2cos2tdtd(sin3t)−sin3tdtd(cos2t)
We know that dxd(sinnx)=nsinn−1x⋅dxd(sinx)=nsinn−1xcosx so applying we get:
⇒dtdx=cos2tcos2t(3sin2tcost)−sin3t21(cos2t)2−1⋅(−sin2t)(2)
Canceling 2 with 2 in the second term of the numerator, we get:
⇒dtdx=cos2tcos2t(3sin2tcost)+sin3tcos2t1sin2t
Taking LCM of cos2t we get:
⇒dtdx=cos2tcos2tcos2tcos2t(3sin2tcost)+sin3tsin2t
Combining both denominator and using xx=x we get:
⇒dtdx=(cos2t)cos2t3cos2tsin2tcost+sin3tsin2t⋯⋯⋯⋯(1)
Now, y is given as y=cos2tcos3t.
Differentiating y with respect to t, we get:
dtdy=dtd(cos2tcos3t)
Applying quotient rule again we get:
⇒dtdy=(cos2t)2cos2tdtd(cos3t)−cos3tdtd(cos2t)
We know that dxd(cosnx)=ncosn−1x⋅dxd(cosx)=xcosn−1(−sinx) so applying it we get:
⇒dtdy=cos2tcos2t(3cos2t(−sint))−cos3t21(cos2t)2−1(−sin2t)(2)
Cancelling 2 in the second term of the numerator we get:
⇒dtdy=cos2t−cos2t(3cos2tsint)+cos2tcos3tsin2t
Taking LCM of cos2t we get:
⇒dtdy=cos2tcos2t−cos2tcos2t(3cos2tsint)+cos3tsin2t
Combining both denominator and simplifying the numerator we get:
⇒dtdy=(cos2t)cos2t−3cos2tcos2tsint+cos3tsin2t⋯⋯⋯⋯(2)
Dividing 1 by 2 we get:
⇒dtdxdtdy=(cos2t)cos2t3cos2tsin2tcost+sin3tsin2t(cos2t)cos2t−3cos2tcos2tsint+cos3tsin2t
As we know, dtdxdtdy=dxdy so applying here, also cancelling the denominator we get:
⇒dxdy=3cos2tsin2tcost+sin3tsin2t−3cos2tcos2tsint+cos3tsin2t
We know that sin2θ=2cosθsinθ so we get:
⇒dxdy=3cos2tsin2tcost+2sin3tsintcost−3cos2tcos2tsint+2cos3tsintcost
Simplifying we get:
⇒dxdy=3cos2tsin2tcost+2sin4tcost−3cos2tcos2tsint+2cos4tsint
Taking cos2tsint common in the numerator and sin2tcost common in the denominator we get:
⇒dxdy=sin2tcost(3cos2t+2sin2t)cos2tsint(−3cos2t+2cos2t)
Cancelling costsint from the numerator and the denominator we get:
⇒dxdy=sint(3cos2t+2sin2t)cost(−3cos2t+2cos2t)
Now we know that, 1+cos2t=2cos2t so using cos2t=2cos2t−1 we get:
⇒dxdy=sint(3(2cos2t−1)+2sin2t)cost(−3(2cos2t−1)+2cos2t)
Simplifying we get:
⇒dxdy=sint(6cos2t−3+2sin2t)cost(−6cos2t+3+2cos2t)
Further simplifying we get:
⇒dxdy=sint(−4sin2t+3)cost(−4cos2t+3) [∵cos2t=1−sin2t]
Multiplying costsint inside the bracket we get:
⇒dxdy=−4sin3t+3sint−4cos3t+3cost
Taking negative sign common from the numerator we get:
⇒dxdy=3sint−4sin3t−(4cos3t−3cost)
Now applying the formula of cos3t and sin3t given by cos3t=4cos3t−3cost and sin3t=3sint−4sin3t we get:
⇒dxdy=sin3t−cos3t
We know that sinθcosθ=cotθ so we get:
⇒dxdy=−cot3t
Hence −cot3t is the required value of dxdy.
Note: Students should take care of signs while applying the trigonometric formula. In the quotient rule, follow the exact order otherwise mistakes could be made in signs. Try to simplify the answer as much as you can by applying trigonometric identities.