Solveeit Logo

Question

Question: If we are given the integral expression as \(\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{...

If we are given the integral expression as 15sin2xcos5xsin2xdx=f(x)cos5x+C\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx}=\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C, then find f(x)f\left( x \right).
A. cosecx-\text{cosec}x
B. cosecx\text{cosec}x
C. cotx\cot x
D. cotx-\cot x

Explanation

Solution

We have been given the integral solution and we differentiate both side with respect to x. the differentiation takes the form of ddx[u(x)v(x)]=v(x).u(x)u(x)[v(x)](v(x))2\dfrac{d}{dx}\left[ \dfrac{u\left( x \right)}{v\left( x \right)} \right]=\dfrac{v\left( x \right).{{u}^{'}}\left( x \right)-u\left( x \right)\left[ {{v}^{'}}\left( x \right) \right]}{{{\left( v\left( x \right) \right)}^{2}}}. Then we equate both sides of the differentiation to find the function and its differential form. We equate with the options to find the solution.

Complete step-by-step solution:

It’s given that 15sin2xcos5xsin2xdx=f(x)cos5x+C\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx}=\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C.
We try to take the differentiation on both sides and equate the respective functions to find f(x)f\left( x \right).
The differentiation of 15sin2xcos5xsin2xdx\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx} gives ddx[15sin2xcos5xsin2xdx]=15sin2xcos5xsin2x\dfrac{d}{dx}\left[ \int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx} \right]=\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}.
Now we try to find the differentiation of f(x)cos5x+C\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C and equate that with 15sin2xcos5xsin2x\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}.
The function f(x)cos5x+C\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C is of the form u(x)v(x)\dfrac{u\left( x \right)}{v\left( x \right)} where ddx[u(x)v(x)]=v(x).u(x)u(x)[v(x)](v(x))2\dfrac{d}{dx}\left[ \dfrac{u\left( x \right)}{v\left( x \right)} \right]=\dfrac{v\left( x \right).{{u}^{'}}\left( x \right)-u\left( x \right)\left[ {{v}^{'}}\left( x \right) \right]}{{{\left( v\left( x \right) \right)}^{2}}}.
Differentiating we get ddx[f(x)cos5x+C]=cos5x.f(x)f(x)[5cos4x(sinx)](cos5x)2\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C \right]=\dfrac{{{\cos }^{5}}x.{{f}^{'}}\left( x \right)-f\left( x \right)\left[ 5{{\cos }^{4}}x\left( -\sin x \right) \right]}{{{\left( {{\cos }^{5}}x \right)}^{2}}}.
We divide both the numerator and denominator with cos5x{{\cos }^{5}}x.
So, ddx[f(x)cos5x+C]=f(x)+f(x)[5tanx]cos5x\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C \right]=\dfrac{{{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]}{{{\cos }^{5}}x}. We equate this with 15sin2xcos5xsin2x\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}.
It gives f(x)+f(x)[5tanx]cos5x=15sin2xcos5xsin2x\dfrac{{{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]}{{{\cos }^{5}}x}=\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}.
Simplifying we get f(x)+f(x)[5tanx]=cosec2x5{{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x-5.
Equating we get f(x)=cosec2x,f(x)[5tanx]=5{{f}^{'}}\left( x \right)=\text{cosec}^{2}x,f\left( x \right)\left[ 5\tan x \right]=-5.
Differentiation of cotx-\cot x is cosec2x\text{cosec}^{2}x. So, we take f(x)=cotxf\left( x \right)=-\cot x.
So, f(x)[5tanx]=(cotx)(5tanx)=5f\left( x \right)\left[ 5\tan x \right]=\left( -\cot x \right)\left( 5\tan x \right)=-5
The correct option is D.

Note: We also could have taken f(x)=5,f(x)[5tanx]=cosec2x{{f}^{'}}\left( x \right)=-5,f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x. But in that case f(x)f\left( x \right) would have been f(x)=5xf\left( x \right)=-5x and (5x)[5tanx]=25xtanxcosec2x\left( -5x \right)\left[ 5\tan x \right]=-25x\tan x\ne \text{cosec}^{2}x. So, the assumption f(x)=5,f(x)[5tanx]=cosec2x{{f}^{'}}\left( x \right)=-5,f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x is incorrect.