Solveeit Logo

Question

Question: If we are given an inverse trigonometric expression as \(y={{\sin }^{-1}}\left( 3x \right)+{{\sec }^...

If we are given an inverse trigonometric expression as y=sin1(3x)+sec1(13x)y={{\sin }^{-1}}\left( 3x \right)+{{\sec }^{-1}}\left( \dfrac{1}{3x} \right), then find the value of dydx\dfrac{dy}{dx}.

Explanation

Solution

We will use the differentiation of inverse trigonometric formulas for inverse sine and secant terms. These are given by ddxsin1(x)=11x2\dfrac{d}{dx}{{\sin }^{-1}}\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}} where 1x201-{{x}^{2}}\ne 0 and ddxsec1(x)=1x211x2\dfrac{d}{dx}{{\sec }^{-1}}\left( x \right)=\dfrac{1}{{{x}^{2}}\sqrt{1-\dfrac{1}{{{x}^{2}}}}} where x1,0,1x\ne -1,0,1. With the help of these formulas we will be able to solve the question.

Complete step-by-step answer:
Now, we will consider the inverse trigonometric expression y=sin1(3x)+sec1(13x)y={{\sin }^{-1}}\left( 3x \right)+{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)...(i). We will differentiate equation (i) with respect of x. Therefore we have ddxy=ddxsin1(3x)+ddxsec1(13x)\dfrac{d}{dx}y=\dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)+\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)...(ii).
Now we will consider the term ddxsin1(3x)\dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right) and find its value by using the formula ddxsin1(x)=11x2\dfrac{d}{dx}{{\sin }^{-1}}\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}} where 1x201-{{x}^{2}}\ne 0. After this we get
ddxsin1(3x)=11(3x)2×3 ddxsin1(3x)=319x2 \begin{aligned} & \dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)=\dfrac{1}{\sqrt{1-{{\left( 3x \right)}^{2}}}}\times 3 \\\ & \Rightarrow \dfrac{d}{dx}{{\sin }^{-1}}\left( 3x \right)=\dfrac{3}{\sqrt{1-9{{x}^{2}}}} \\\ \end{aligned}
Here, c1{{c}_{1}} is any arbitrary constant. Now we will consider the term ddxsec1(13x)\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right). At this step we will apply the formula and ddxsec1(x)=1x211x2\dfrac{d}{dx}{{\sec }^{-1}}\left( x \right)=\dfrac{1}{{{x}^{2}}\sqrt{1-\dfrac{1}{{{x}^{2}}}}} where x1,0,1x\ne -1,0,1 to evaluate it. Thus, we will get
ddxsec1(13x)=1(13x)211(13x)2×ddx(13x)\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=\dfrac{1}{{{\left( \dfrac{1}{3x} \right)}^{2}}\sqrt{1-\dfrac{1}{{{\left( \dfrac{1}{3x} \right)}^{2}}}}}\times \dfrac{d}{dx}\left( \dfrac{1}{3x} \right). The value of ddx(13x)\dfrac{d}{dx}\left( \dfrac{1}{3x} \right) can be carried out by solving it like so, ddx(13x)=13ddx(1x)\dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=\dfrac{1}{3}\dfrac{d}{dx}\left( \dfrac{1}{x} \right). As we know that ddx(1x)=1x2\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-\dfrac{1}{{{x}^{2}}}. Therefore we get
ddx(13x)=13×1x2 ddx(13x)=13x2 \begin{aligned} & \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=\dfrac{1}{3}\times -\dfrac{1}{{{x}^{2}}} \\\ & \Rightarrow \dfrac{d}{dx}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{3{{x}^{2}}} \\\ \end{aligned}
After substituting this value in above equation we will have
ddxsec1(13x)=119x21119x2×(13x2) ddxsec1(13x)=13x29x21119x2 ddxsec1(13x)=1131119x2 \begin{aligned} & \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=\dfrac{1}{\dfrac{1}{9{{x}^{2}}}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}}\times \left( -\dfrac{1}{3{{x}^{2}}} \right) \\\ & \Rightarrow \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{3{{x}^{2}}}{9{{x}^{2}}}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}} \\\ & \Rightarrow \dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{1}{3}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}} \\\ \end{aligned}
Here, c4{{c}_{4}} is any arbitrary constant. Now we will use the property abc=acb\dfrac{a}{\dfrac{b}{c}}=\dfrac{ac}{b} in ddxsec1(13x)=1131119x2\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{1}{\dfrac{1}{3}\sqrt{1-\dfrac{1}{\dfrac{1}{9{{x}^{2}}}}}} so, to get ddxsec1(13x)=319x2\dfrac{d}{dx}{{\sec }^{-1}}\left( \dfrac{1}{3x} \right)=-\dfrac{3}{\sqrt{1-9{{x}^{2}}}}. After this we are going to substitute these values in equation (ii). This results into
ddxy=319x2+319x2 ddxy=0 \begin{aligned} & \dfrac{d}{dx}y=\dfrac{3}{\sqrt{1-9{{x}^{2}}}}+-\dfrac{3}{\sqrt{1-9{{x}^{2}}}} \\\ & \Rightarrow \dfrac{d}{dx}y=0 \\\ \end{aligned}
Hence, the value of dydx\dfrac{dy}{dx} is 0.

Note: We can also use the basic triple angle formula of sine which is given by sin(3x)=3sin(x)4sin3(x)\sin \left( 3x \right)=3\sin \left( x \right)-4{{\sin }^{3}}\left( x \right). With the help of this formula we can find out sin(3x)+4sin3(x)=3sin(x)\sin \left( 3x \right)+4{{\sin }^{3}}\left( x \right)=3\sin \left( x \right) and put it in the equation (i). Then we can solve it further and get a different equation. Here all the constants as c are the arbitrary constants. This means that with the presence of these in the solution will never hinder the answer. As in this question we do not have definite values this is why we are using the constants while using the differentiation operation.

s.