Solveeit Logo

Question

Question: If we are given an integral expression as \(\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{...

If we are given an integral expression as dxx3(1+x6)23=xf(x)(1+x6)13+C\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+C where, CC is a constant of integration, then the function f(x)f\left( x \right) is equal to $$$$
A.\dfrac{-1}{6{{x}^{3}}}$$$$$ B.\dfrac{3}{{{x}^{2}}} C.$\dfrac{-1}{2{{x}^{2}}}
D.12x3\dfrac{-1}{2{{x}^{3}}}$$$$

Explanation

Solution

We proceed from the left hand side and take x6{{x}^{6}}common from the bracket. We substitute t3=1x6+1{{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1 and find dxdx in terms of t,dtt,dt also substitute in the integrand. We integrate with respect to tt and put back tt in terms of xx. We multiply and divide xx and then compare the resultant expression with expression at the right hand side to get f(x)f\left( x \right).$$$$

Complete step-by-step solution
We are given in the question an equation whose left hand side has an integral and the right hand side has functional equation as
dxx3(1+x6)23=xf(x)(1+x6)13+C\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+C
If we shall integrate the left hand side and try to express the result similar to the expression at the right hand side we may get the required functionf(x)f\left( x \right). We proceed from left hand side,
dxx3(1+x6)23\Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}
We take x6{{x}^{6}} common from the bracket in the denominator to get,

& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}}\left( \dfrac{1}{{{x}^{6}}}+1 \right) \right)}^{\dfrac{2}{3}}}}} \\\ & \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\\ \end{aligned}$$ We use the exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=6,n=\dfrac{2}{3}$ in the above step to have $$\begin{aligned} & \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{x}^{6\times \dfrac{2}{3}}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\\ & \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{x}^{4}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\\ \end{aligned}$$ We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=3,n=4$ in the above step to have, $$\begin{aligned} & \Rightarrow \int{\dfrac{dx}{{{x}^{3+4}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\\ & \Rightarrow \int{\dfrac{dx}{{{x}^{7}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}}.........\left( 1 \right) \\\ \end{aligned}$$ We can substitute ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ in the above step since integration is independent of change in variable and for that we also need $dx$ and rest of the expression in $x$ in terms of $t$. We differentiate ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ both side with respect to $x$ to have, $$\begin{aligned} & \dfrac{d}{dx}{{t}^{3}}=\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{6}}}+1 \right)=\dfrac{d}{dx}\left( {{x}^{-6}}+1 \right) \\\ & \Rightarrow 3{{t}^{2}}\dfrac{dt}{dx}=-6{{x}^{-7}}+0 \\\ & \Rightarrow dx=\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}} dt \\\ \end{aligned}$$ We put ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ and $dx=\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}}$ in (1) to have $$\begin{aligned} & \Rightarrow \int{\dfrac{\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}}dt}{{{x}^{7}}{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}} \\\ & \Rightarrow \int{\dfrac{3{{t}^{2}}dt}{-6{{x}^{-7}}\cdot {{x}^{7}}{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}} \\\ \end{aligned}$$ We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=-7,n=7$ and exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=t,m=3,n=\dfrac{2}{3}$ in the above step to have $$\begin{aligned} & \Rightarrow \int{\dfrac{{{t}^{2}}dt}{-2{{x}^{-7+7}}{{t}^{3\times \dfrac{2}{3}}}}} \\\ & \Rightarrow \dfrac{-1}{2}\int{\dfrac{{{t}^{2}}dt}{{{x}^{0}}{{t}^{2}}}} \\\ & \Rightarrow \dfrac{-1}{2}\int{dt} \\\ & \Rightarrow \dfrac{-1}{2}t+C \\\ \end{aligned}$$ We take cube root of both side of the equation ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ and find $t={{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{1}{3}}}$. We put $t$ in the above step to have, $$\begin{aligned} & \Rightarrow \dfrac{-1}{2}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{1}{3}}}+C \\\ & \Rightarrow \dfrac{-1}{2}{{\left( \dfrac{{{x}^{6}}+1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+C \\\ & \Rightarrow \dfrac{-1}{2}\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{\left( {{x}^{6}} \right)}^{\dfrac{1}{3}}}}+C \\\ \end{aligned}$$ We use exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=6,n=\dfrac{1}{3}$ in the above step to have $$\Rightarrow \dfrac{-1}{2}\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{x}^{2}}}+C$$ Let us multiply and divide $x$ with the expression to make it comparable with the expression at right hand side $xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}$. We have, $$\begin{aligned} & \Rightarrow \dfrac{-1}{2}x\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{x}^{2}}\cdot x}+C \\\ & \Rightarrow \dfrac{-1}{2{{x}^{3}}}x{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}+C \\\ & \Rightarrow x\left( \dfrac{-1}{2{{x}^{3}}} \right){{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}+C=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}$$ **We compare both sides and have the required function as $f\left( x \right)=\dfrac{-1}{2{{x}^{3}}}$. So the correct option is D.** **Note:** We note that the function is not defined for $x=0$ and the question assumes that. The method of integration we used here is called t-substitution or integration by substitution. We have also used the formula standard integral $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1$ and the standard differentiation formula $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ frequently in this problem.