Solveeit Logo

Question

Question: If we are given a trigonometric expression as \(f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2\cos ...

If we are given a trigonometric expression as f(x)=cos1(2cosx3sinx13)f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2\cos x-3\sin x}{\sqrt{13}} \right) then, [f(x)2]\left[ f'{{\left( x \right)}^{2}} \right] is equal to
(a) 1+x\sqrt{1+x}
(b) 1 + 2x
(c) 2
(d) 1
(e) 0

Explanation

Solution

Hint: We will apply here the formula of basic identity in trigonometry which is given by sin2(p)+cos2(p)=1{{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1 or sin2(p)=1cos2(p){{\sin }^{2}}\left( p \right)=1-{{\cos }^{2}}\left( p \right). Also we will use the formula cos(p)cos(x)sin(p)sin(x)=cos(p+x)\cos \left( p \right)\cos \left( x \right)-\sin \left( p \right)\sin \left( x \right)=\cos \left( p+x \right) in order to solve the question further.

Complete step-by-step answer:

We will consider f(x)=cos1(2cosx3sinx13)f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2\cos x-3\sin x}{\sqrt{13}} \right)...(i).
We can also write this equation as f(x)=cos1(2cosx133sinx13)f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2\cos x}{\sqrt{13}}-\dfrac{3\sin x}{\sqrt{13}} \right) or f(x)=cos1(213cosx313sinx)f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{13}}\cos x-\dfrac{3}{\sqrt{13}}\sin x \right).
Now, we will substitute the value cos(p)=213\cos \left( p \right)=\dfrac{2}{\sqrt{13}}. This results in p=cos1(213)p={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{13}} \right).
As we know that cos(p)cos(x)sin(p)sin(x)=cos(p+x)\cos \left( p \right)\cos \left( x \right)-\sin \left( p \right)\sin \left( x \right)=\cos \left( p+x \right) therefore, to convert the equation f(x)=cos1(213cosx313sinx)f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{13}}\cos x-\dfrac{3}{\sqrt{13}}\sin x \right) into cos(p)cos(x)sin(p)sin(x)=cos(p+x)\cos \left( p \right)\cos \left( x \right)-\sin \left( p \right)\sin \left( x \right)=\cos \left( p+x \right) form we will need to find the value of sin(p)\sin \left( p \right).
For this we will apply the formula of basic identity in trigonometry. The formula is given by sin2(p)+cos2(p)=1{{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1 or sin2(p)=1cos2(p){{\sin }^{2}}\left( p \right)=1-{{\cos }^{2}}\left( p \right). Now we will substitute the value of cos(p)=213\cos \left( p \right)=\dfrac{2}{\sqrt{13}} into this formula. Therefore, we get sin2(p)=1cos2(p) sin2(p)=1(213)2 sin2(p)=1413 sin2(p)=13413 sin2(p)=913 sin(p)=913 sin(p)=±313 \begin{aligned} & {{\sin }^{2}}\left( p \right)=1-{{\cos }^{2}}\left( p \right) \\\ & \Rightarrow {{\sin }^{2}}\left( p \right)=1-{{\left( \dfrac{2}{\sqrt{13}} \right)}^{2}} \\\ & \Rightarrow {{\sin }^{2}}\left( p \right)=1-\dfrac{4}{13} \\\ & \Rightarrow {{\sin }^{2}}\left( p \right)=\dfrac{13-4}{13} \\\ & \Rightarrow {{\sin }^{2}}\left( p \right)=\dfrac{9}{13} \\\ & \Rightarrow \sin \left( p \right)=\sqrt{\dfrac{9}{13}} \\\ & \Rightarrow \sin \left( p \right)=\pm \dfrac{3}{\sqrt{13}} \\\ \end{aligned}
Now, we have two values of sine given by sin(p)=313\sin \left( p \right)=\dfrac{3}{\sqrt{13}} and sin(p)=313\sin \left( p \right)=-\dfrac{3}{\sqrt{13}}.
We will reject the negative value here as it will not satisfy the formula sin2(p)+cos2(p)=1{{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1. Therefore, we now have cos(p)=213\cos \left( p \right)=\dfrac{2}{\sqrt{13}} and sin(p)=313\sin \left( p \right)=\dfrac{3}{\sqrt{13}}.
Now we will substitute these values in equation f(x)=cos1(213cosx313sinx)f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{13}}\cos x-\dfrac{3}{\sqrt{13}}\sin x \right). Thus, we get
f(x)=cos1(cospcosxsinpsinx)f\left( x \right)={{\cos }^{-1}}\left( \cos p\cos x-\sin p\sin x \right)
At this step we will use the formula given by cos(p)cos(x)sin(p)sin(x)=cos(p+x)\cos \left( p \right)\cos \left( x \right)-\sin \left( p \right)\sin \left( x \right)=\cos \left( p+x \right). This results into f(x)=cos1(cos(p+x))f\left( x \right)={{\cos }^{-1}}\left( \cos \left( p+x \right) \right). As we know that cos1(cosp)=p{{\cos }^{-1}}\left( \cos p \right)=p therefore, we get f(x)=p+xf\left( x \right)=p+x.
Now, we will differentiate this equation with respect to x. So, we now get ddx(f(x))=ddx(p+x) ddx(f(x))=ddxp+ddxx \begin{aligned} & \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( p+x \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}p+\dfrac{d}{dx}x \\\ \end{aligned}
As we know that dxdx=1\dfrac{dx}{dx}=1 therefore we get ddx(f(x))=ddxp+1\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}p+1. Also, as we know that p works as a constant here because we are differentiating with respect to x only therefore, by the fact that differentiating a constant with respect to x, we will use the formula dpdx=0\dfrac{dp}{dx}=0 in the equation ddx(f(x))=ddxp+1\dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}p+1.
Therefore, we get ddx(f(x))=1\dfrac{d}{dx}\left( f\left( x \right) \right)=1. As we know that ddx(f(x))=f(x)\dfrac{d}{dx}\left( f\left( x \right) \right)=f'\left( x \right) therefore, we have f(x)=1f'\left( x \right)=1.
Now, we will apply the square on both sides of the equation f(x)=1f'\left( x \right)=1. Thus we get [f(x)]2=(1)2{{\left[ f'\left( x \right) \right]}^{2}}={{\left( 1 \right)}^{2}} or [f(x)2]=1\left[ f'{{\left( x \right)}^{2}} \right]=1.
Therefore, the correct option is (d).

Note: As we have substituted cos(p)=213\cos \left( p \right)=\dfrac{2}{\sqrt{13}} in equation f(x)=cos1(213cosx313sinx)f\left( x \right)={{\cos }^{-1}}\left( \dfrac{2}{\sqrt{13}}\cos x-\dfrac{3}{\sqrt{13}}\sin x \right) Instead of this we can also substitute sin(p)=313\sin \left( p \right)=\dfrac{3}{\sqrt{13}} and get cos(p)=213\cos \left( p \right)=\dfrac{2}{\sqrt{13}} after solving. We can also chose the form of the sin(p)cos(x)cos(p)sin(x)=sin(px)\sin \left( p \right)\cos \left( x \right)-\cos \left( p \right)\sin \left( x \right)=\sin \left( p-x \right) instead of cos(p)cos(x)sin(p)sin(x)=cos(p+x)\cos \left( p \right)\cos \left( x \right)-\sin \left( p \right)\sin \left( x \right)=\cos \left( p+x \right) for the conversion of equation (i). But as we can clearly see that there is an inverse cosine term on the outside of the expression also we know that cos1(cosp)=p{{\cos }^{-1}}\left( \cos p \right)=p therefore we have chosen cos(p)cos(x)sin(p)sin(x)=cos(p+x)\cos \left( p \right)\cos \left( x \right)-\sin \left( p \right)\sin \left( x \right)=\cos \left( p+x \right) as for the conversion in this question.