Solveeit Logo

Question

Question: If we are given a trigonometric expression as \(\cos \left( \theta +\varnothing \right)=m\cos \left(...

If we are given a trigonometric expression as cos(θ+)=mcos(θ)\cos \left( \theta +\varnothing \right)=m\cos \left( \theta -\varnothing \right) then tanθ\tan \theta is equal to

& A.\left( \dfrac{1+m}{1-m} \right)\tan \varnothing \\\ & B.\left( \dfrac{1-m}{1+m} \right)\tan \varnothing \\\ & C.\left( \dfrac{1+m}{1-m} \right)\cot \varnothing \\\ & D.\left( \dfrac{1-m}{1+m} \right)\cot \varnothing \\\ \end{aligned}$$
Explanation

Solution

In this question, we are given a trigonometric expression and we have to find the value of tanθ\tan \theta in terms of m and angle \varnothing . For simplifying this we will apply componendo dividendo. After that, we will use the trigonometric formula of cosC+cosD\cos C+\cos D and cosCcosD\cos C-\cos D to simplify calculation. At last, we will apply the following trigonometric formulas to obtain our answer.
cosθsinθ=cotθ and 1tanθ=cotθ\dfrac{\cos \theta }{\sin \theta }=\cot \theta \text{ and }\dfrac{1}{\tan \theta }=\cot \theta
Formula of cosC+cosD\cos C+\cos D is given as,
cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
Formula of cosCcosD\cos C-\cos D is given as,
cosCcosD=2sin(C+D2)sin(DC2)\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)

Complete step-by-step solution:
Here, we are given the equation as, cos(θ+)=mcos(θ)\cos \left( \theta +\varnothing \right)=m\cos \left( \theta -\varnothing \right) and we have to find the value of tanθ\tan \theta . For this, let us simplify the given equation. Firstly, let us bring all cosine terms on one side and 'm' terms on other, we get:
cos(θ+)cos(θ)=m\dfrac{\cos \left( \theta +\varnothing \right)}{\cos \left( \theta -\varnothing \right)}=m
Let us now apply componendo and dividendo to above equation, we get:
cos(θ+)+cos(θ)cos(θ+)cos(θ)=m+1m1\Rightarrow \dfrac{\cos \left( \theta +\varnothing \right)+\cos \left( \theta -\varnothing \right)}{\cos \left( \theta +\varnothing \right)-\cos \left( \theta -\varnothing \right)}=\dfrac{m+1}{m-1}
Let us take negative sign common from denominator of both sides, we get:
cos(θ+)+cos(θ)(cos(θ)cos(θ+))=m+1(1m)\Rightarrow \dfrac{\cos \left( \theta +\varnothing \right)+\cos \left( \theta -\varnothing \right)}{-\left( \cos \left( \theta -\varnothing \right)-\cos \left( \theta +\varnothing \right) \right)}=\dfrac{m+1}{-\left( 1-m \right)}
Cancelling the negative sign from denominator of both sides and rearranging numerator of right hand side, we get:
cos(θ+)+cos(θ)cos(θ)cos(θ+)=1+m1m\Rightarrow \dfrac{\cos \left( \theta +\varnothing \right)+\cos \left( \theta -\varnothing \right)}{\cos \left( \theta -\varnothing \right)-\cos \left( \theta +\varnothing \right)}=\dfrac{1+m}{1-m}
As we know, cosC+cosD=2cos(C+D2)cos(CD2) and cosCcosD=2sin(C+D2)sin(DC2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\text{ and }\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right) so applying them on left side, we get:
2cos(θ++θ2)cos(θ+θ+2)2sin(θ++θ2)sin(θ+θ+2)=1+m1m\Rightarrow \dfrac{2\cos \left( \dfrac{\theta +\varnothing +\theta -\varnothing }{2} \right)\cos \left( \dfrac{\theta +\varnothing -\theta +\varnothing }{2} \right)}{2\sin \left( \dfrac{\theta +\varnothing +\theta -\varnothing }{2} \right)\sin \left( \dfrac{\theta +\varnothing -\theta +\varnothing }{2} \right)}=\dfrac{1+m}{1-m}
Simplifying the angles of cosine and sine, we get:
2cosθcos2sinθsin=1+m1m\Rightarrow \dfrac{2\cos \theta \cos \varnothing }{2\sin \theta \sin \varnothing }=\dfrac{1+m}{1-m}
Cancelling 2 from numerator and denominator of left side, we get:
cosθcossinθsin=1+m1m\Rightarrow \dfrac{\cos \theta \cos \varnothing }{\sin \theta \sin \varnothing }=\dfrac{1+m}{1-m}
As we know, cosθsinθ=cotθ\dfrac{\cos \theta }{\sin \theta }=\cot \theta and similarly cossin=cot\dfrac{\cos \varnothing }{\sin \varnothing }=\cot \varnothing . Therefore, applying it to left side we get:
cotθcot=1+m1m\Rightarrow \cot \theta \cot \varnothing =\dfrac{1+m}{1-m}
Applying 1tanθ=cotθ\dfrac{1}{\tan \theta }=\cot \theta on left side we get:
cottanθ=1+m1m\Rightarrow \dfrac{\cot \varnothing }{\tan \theta }=\dfrac{1+m}{1-m}
Taking reciprocal on both sides we get:
tanθcot=1m1+m\Rightarrow \dfrac{\tan \theta }{\cot \varnothing }=\dfrac{1-m}{1+m}
Now, we have to find value of tanθ\tan \theta so taking cot\cot \varnothing on other side we get:
tanθ=(1m1+m)cot\Rightarrow \tan \theta =\left( \dfrac{1-m}{1+m} \right)\cot \varnothing
Hence, option D is the correct answer.

Note: Students should note that, while applying componendo-dividendo we have taken 1 as the denominator of m and hence, added m and 1 in the numerator and subtract them in the denominator. Students should keep in mind all the trigonometric formulas and identities. Apply cosC+cosD\cos C+\cos D and cosCcosD\cos C-\cos D formula carefully and don't make mistakes in the plus-minus sign.