Question
Question: If we are given a matrix as \(A=\left[ \begin{matrix} \cos \theta & -\sin \theta \\\ \sin ...
If we are given a matrix as A=cosθ sinθ −sinθcosθ, then the matrix A−50 when θ=12π, is equal to
A. 23 −21 2123
B. 21 −23 2321
C. 21 23 −2321
D. 23 21 −2123
Solution
First we will calculate the inverse of the given matrix A by calculating the ∣A∣ and adj(A). Now we will calculate the values of A−2, A−3,… by using the value of inverse of matrix A i.e. A−1. From the values of A−2, A−3,… we will write the value of A−n. From the value of A−n we will calculate the required value A−50.
Complete step-by-step solution
Given that, A=cosθ sinθ −sinθcosθ
Determinant of the matrix A is given by
∣A∣=cosθ sinθ −sinθcosθ⇒∣A∣=cosθ(cosθ)−(−sinθ)(sinθ)⇒∣A∣=cos2θ+sin2θ
We have the trigonometric identity sin2θ+cos2θ=1.
∴∣A∣=1
We know that adjoint matrix of x=a b cd can be written as adj(x)=d −b −ca.
∴adj(A)=cosθ −sinθ sinθcosθ
Now the inverse of the matrix A is given by
A−1=∣A∣1adj(A)⇒A−1=11cosθ −sinθ sinθcosθ⇒A−1=cosθ −sinθ sinθcosθ
Now the value of A−2 can be calculated as
A−2=(A−1)2⇒A−2=A−1.A−1
Substituting A−1=cosθ −sinθ sinθcosθ in the above equation, then we will get
A−2=cosθ −sinθ sinθcosθ.cosθ −sinθ sinθcosθ⇒A−2=cosθ(cosθ)+sinθ(−sinθ) −sinθ(cosθ)+cosθ(−sinθ) cosθ(sinθ)+sinθ(cosθ)−sinθ(sinθ)+cosθ(cosθ)⇒A−2=cos2θ−sin2θ −2sinθcosθ 2sinθcosθcos2θ−sin2θ
We have the trigonometric formulas as cos2θ−sin2θ=cos2θ and 2sinθcosθ=sin2θ, now the value of A−2 will be
A−2=cos2θ −sin2θ sin2θcos2θ....(i)
Now we will calculate the value of A−3 by multiplying A−2 with A−1, then we will get
A−3=A−2.A−1⇒A−3=cos2θ −sin2θ sin2θcos2θ.cosθ −sinθ sinθcosθ⇒A−3=cos2θcosθ−sin2θ.sinθ −(sin2θ.cosθ+cos2θ.sinθ) cos2θ.sinθ+sin2θ.cosθcos2θ.cosθ−sin2θ.sinθ
We have trigonometric formulas as sin(A+B)=sinA.cosB+cosA.sinB and cos(A+B)=cosA.cosB−sinA.sinB, then we will get
⇒A−3=cos(2θ+θ) −sin(2θ+θ) sin(2θ+θ)cos(2θ+θ)⇒A−3=cos3θ −sin3θ sin3θcos3θ
We have the values of A−1, A−2, A−3 as
A−1=cosθ −sinθ sinθcosθ
A−2=cos2θ −sin2θ sin2θcos2θ
A−3=cos3θ −sin3θ sin3θcos3θ
Similarly, we can write that A−n=cosnθ −sinnθ sinnθcosnθ
Hence the value of A−50 is
A−50=cos50θ −sin50θ sin50θcos50θ
Given that θ=12π, then the value of A−50 will be
A−50=cos50×12π −sin50×12π sin50×12πcos50×12π⇒A−50=cos(4π+6π) −sin(4π+6π) sin(4π+6π)cos(4π+6π)
We know that cos(nπ+θ)=cosθ and sin(nπ+θ)=sinθ, then we will get
A−50=23 −21 2123
∴ Option – A is the correct option.
Note: For this kind of problem students should know how to multiply matrices. Because the whole problem completely depends on the values of A−1, A−2, A−3 and it is also important to know how to calculate the values trigonometric ratios for a given angle. If you do everything correct up to the calculation of A−n and make mistakes in the calculation of trigonometric ratios at given θ you won’t get the correct answer.