Solveeit Logo

Question

Question: If we are given a matrix as \(A=\left[ \begin{matrix} \cos \theta & -\sin \theta \\\ \sin ...

If we are given a matrix as A=[cosθsinθ sinθcosθ ]A=\left[ \begin{matrix} \cos \theta & -\sin \theta \\\ \sin \theta & \cos \theta \\\ \end{matrix} \right], then the matrix A50{{A}^{-50}} when θ=π12\theta =\dfrac{\pi }{12}, is equal to
A. [3212 1232 ]\left[ \begin{matrix} \dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \\\ \end{matrix} \right]
B. [1232 3212 ]\left[ \begin{matrix} \dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \\\ -\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\\ \end{matrix} \right]
C. [1232 3212 ]\left[ \begin{matrix} \dfrac{1}{2} & -\dfrac{\sqrt{3}}{2} \\\ \dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\\ \end{matrix} \right]
D. [3212 1232 ]\left[ \begin{matrix} \dfrac{\sqrt{3}}{2} & -\dfrac{1}{2} \\\ \dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \\\ \end{matrix} \right]

Explanation

Solution

First we will calculate the inverse of the given matrix AA by calculating the A\left| A \right| and adj(A)adj\left( A \right). Now we will calculate the values of A2{{A}^{-2}}, A3{{A}^{-3}},… by using the value of inverse of matrix AA i.e. A1{{A}^{-1}}. From the values of A2{{A}^{-2}}, A3{{A}^{-3}},… we will write the value of An{{A}^{-n}}. From the value of An{{A}^{-n}} we will calculate the required value A50{{A}^{-50}}.

Complete step-by-step solution
Given that, A=[cosθsinθ sinθcosθ ]A=\left[ \begin{matrix} \cos \theta & -\sin \theta \\\ \sin \theta & \cos \theta \\\ \end{matrix} \right]
Determinant of the matrix AA is given by
A=cosθsinθ sinθcosθ  A=cosθ(cosθ)(sinθ)(sinθ) A=cos2θ+sin2θ \begin{aligned} & \left| A \right|=\left| \begin{matrix} \cos \theta & -\sin \theta \\\ \sin \theta & \cos \theta \\\ \end{matrix} \right| \\\ & \Rightarrow \left| A \right|=\cos \theta \left( \cos \theta \right)-\left( -\sin \theta \right)\left( \sin \theta \right) \\\ & \Rightarrow \left| A \right|={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \\\ \end{aligned}
We have the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
A=1\therefore \left| A \right|=1
We know that adjoint matrix of x=[ac bd ]x=\left[ \begin{matrix} a & c \\\ b & d \\\ \end{matrix} \right] can be written as adj(x)=[dc ba ]adj\left( x \right)=\left[ \begin{matrix} d & -c \\\ -b & a \\\ \end{matrix} \right].
adj(A)=[cosθsinθ sinθcosθ ]\therefore adj\left( A \right)=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right]
Now the inverse of the matrix AA is given by
A1=1Aadj(A) A1=11[cosθsinθ sinθcosθ ] A1=[cosθsinθ sinθcosθ ] \begin{aligned} & {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right) \\\ & \Rightarrow {{A}^{-1}}=\dfrac{1}{1}\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-1}}=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right] \\\ \end{aligned}
Now the value of A2{{A}^{-2}} can be calculated as
A2=(A1)2 A2=A1.A1 \begin{aligned} & {{A}^{-2}}={{\left( {{A}^{-1}} \right)}^{2}} \\\ & \Rightarrow {{A}^{-2}}={{A}^{-1}}.{{A}^{-1}} \\\ \end{aligned}
Substituting A1=[cosθsinθ sinθcosθ ]{{A}^{-1}}=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right] in the above equation, then we will get
A2=[cosθsinθ sinθcosθ ].[cosθsinθ sinθcosθ ] A2=[cosθ(cosθ)+sinθ(sinθ)cosθ(sinθ)+sinθ(cosθ) sinθ(cosθ)+cosθ(sinθ)sinθ(sinθ)+cosθ(cosθ) ] A2=[cos2θsin2θ2sinθcosθ 2sinθcosθcos2θsin2θ ] \begin{aligned} & {{A}^{-2}}=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right].\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-2}}=\left[ \begin{matrix} \cos \theta \left( \cos \theta \right)+\sin \theta \left( -\sin \theta \right) & \cos \theta \left( \sin \theta \right)+\sin \theta \left( \cos \theta \right) \\\ -\sin \theta \left( \cos \theta \right)+\cos \theta \left( -\sin \theta \right) & -\sin \theta \left( \sin \theta \right)+\cos \theta \left( \cos \theta \right) \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-2}}=\left[ \begin{matrix} {{\cos }^{2}}\theta -{{\sin }^{2}}\theta & 2\sin \theta \cos \theta \\\ -2\sin \theta \cos \theta & {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\\ \end{matrix} \right] \\\ \end{aligned}
We have the trigonometric formulas as cos2θsin2θ=cos2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta and 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta , now the value of A2{{A}^{-2}} will be
A2=[cos2θsin2θ sin2θcos2θ ]....(i){{A}^{-2}}=\left[ \begin{matrix} \cos 2\theta & \sin 2\theta \\\ -\sin 2\theta & \cos 2\theta \\\ \end{matrix} \right]....\left( \text{i} \right)
Now we will calculate the value of A3{{A}^{-3}} by multiplying A2{{A}^{-2}} with A1{{A}^{-1}}, then we will get
A3=A2.A1 A3=[cos2θsin2θ sin2θcos2θ ].[cosθsinθ sinθcosθ ] A3=[cos2θcosθsin2θ.sinθcos2θ.sinθ+sin2θ.cosθ (sin2θ.cosθ+cos2θ.sinθ)cos2θ.cosθsin2θ.sinθ ] \begin{aligned} & {{A}^{-3}}={{A}^{-2}}.{{A}^{-1}} \\\ & \Rightarrow {{A}^{-3}}=\left[ \begin{matrix} \cos 2\theta & \sin 2\theta \\\ -\sin 2\theta & \cos 2\theta \\\ \end{matrix} \right].\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-3}}=\left[ \begin{matrix} \cos 2\theta \cos \theta -\sin 2\theta .\sin \theta & \cos 2\theta .\sin \theta +\sin 2\theta .\cos \theta \\\ -\left( \sin 2\theta .\cos \theta +\cos 2\theta .\sin \theta \right) & \cos 2\theta .\cos \theta -\sin 2\theta .\sin \theta \\\ \end{matrix} \right] \\\ \end{aligned}
We have trigonometric formulas as sin(A+B)=sinA.cosB+cosA.sinB\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B and cos(A+B)=cosA.cosBsinA.sinB\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B, then we will get
A3=[cos(2θ+θ)sin(2θ+θ) sin(2θ+θ)cos(2θ+θ) ] A3=[cos3θsin3θ sin3θcos3θ ] \begin{aligned} & \Rightarrow {{A}^{-3}}=\left[ \begin{matrix} \cos \left( 2\theta +\theta \right) & \sin \left( 2\theta +\theta \right) \\\ -\sin \left( 2\theta +\theta \right) & \cos \left( 2\theta +\theta \right) \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-3}}=\left[ \begin{matrix} \cos 3\theta & \sin 3\theta \\\ -\sin 3\theta & \cos 3\theta \\\ \end{matrix} \right] \\\ \end{aligned}
We have the values of A1{{A}^{-1}}, A2{{A}^{-2}}, A3{{A}^{-3}} as
A1=[cosθsinθ sinθcosθ ]{{A}^{-1}}=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right]
A2=[cos2θsin2θ sin2θcos2θ ]{{A}^{-2}}=\left[ \begin{matrix} \cos 2\theta & \sin 2\theta \\\ -\sin 2\theta & \cos 2\theta \\\ \end{matrix} \right]
A3=[cos3θsin3θ sin3θcos3θ ]{{A}^{-3}}=\left[ \begin{matrix} \cos 3\theta & \sin 3\theta \\\ -\sin 3\theta & \cos 3\theta \\\ \end{matrix} \right]
Similarly, we can write that An=[cosnθsinnθ sinnθcosnθ ]{{A}^{-n}}=\left[ \begin{matrix} \cos n\theta & \sin n\theta \\\ -\sin n\theta & \cos n\theta \\\ \end{matrix} \right]
Hence the value of A50{{A}^{-50}} is
A50=[cos50θsin50θ sin50θcos50θ ]{{A}^{-50}}=\left[ \begin{matrix} \cos 50\theta & \sin 50\theta \\\ -\sin 50\theta & \cos 50\theta \\\ \end{matrix} \right]
Given that θ=π12\theta =\dfrac{\pi }{12}, then the value of A50{{A}^{-50}} will be
A50=[cos50×π12sin50×π12 sin50×π12cos50×π12 ] A50=[cos(4π+π6)sin(4π+π6) sin(4π+π6)cos(4π+π6) ] \begin{aligned} & {{A}^{-50}}=\left[ \begin{matrix} \cos 50\times \dfrac{\pi }{12} & \sin 50\times \dfrac{\pi }{12} \\\ -\sin 50\times \dfrac{\pi }{12} & \cos 50\times \dfrac{\pi }{12} \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-50}}=\left[ \begin{matrix} \cos \left( 4\pi +\dfrac{\pi }{6} \right) & \sin \left( 4\pi +\dfrac{\pi }{6} \right) \\\ -\sin \left( 4\pi +\dfrac{\pi }{6} \right) & \cos \left( 4\pi +\dfrac{\pi }{6} \right) \\\ \end{matrix} \right] \\\ \end{aligned}
We know that cos(nπ+θ)=cosθ\cos \left( n\pi +\theta \right)=\cos \theta and sin(nπ+θ)=sinθ\sin \left( n\pi +\theta \right)=\sin \theta , then we will get
A50=[3212 1232 ]{{A}^{-50}}=\left[ \begin{matrix} \dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \\\ \end{matrix} \right]
\therefore Option – A is the correct option.

Note: For this kind of problem students should know how to multiply matrices. Because the whole problem completely depends on the values of A1{{A}^{-1}}, A2{{A}^{-2}}, A3{{A}^{-3}} and it is also important to know how to calculate the values trigonometric ratios for a given angle. If you do everything correct up to the calculation of An{{A}^{-n}} and make mistakes in the calculation of trigonometric ratios at given θ\theta you won’t get the correct answer.