Solveeit Logo

Question

Question: If we are given a matrix as \(A=\left[ \begin{matrix} a+ib & c+id \\\ -c+id & a-ib \\\ \...

If we are given a matrix as A=[a+ibc+id c+idaib ]A=\left[ \begin{matrix} a+ib & c+id \\\ -c+id & a-ib \\\ \end{matrix} \right] and a2+b2+c2+d2=1{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}=1 , then A1{{A}^{-1}} is equal to
(A)[a+ibcid c+idaib ]\left[ \begin{matrix} a+ib & -c-id \\\ -c+id & a-ib \\\ \end{matrix} \right]
(B)[a+ibc+id c+idaib ]\left[ \begin{matrix} a+ib & -c+id \\\ -c+id & a-ib \\\ \end{matrix} \right]
(C)[aibcid cida+ib ]\left[ \begin{matrix} a-ib & -c-id \\\ c-id & a+ib \\\ \end{matrix} \right]
(D) None of these

Explanation

Solution

For answering this question we will use A1=adj(A)A{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|} and we will initially find the determinant of the matrix using A=[a11a12 a21a22 ]A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right] is given by A=a11a22a12a21\left| A \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} and later we will find the adjoint of the matrix using adj(A)=[a22a12 a21a11 ]adj\left( A \right)=\left[ \begin{matrix} {{a}_{22}} & -{{a}_{12}} \\\ -{{a}_{21}} & {{a}_{11}} \\\ \end{matrix} \right] and further simplify them.

Complete step-by-step solution:
Here in the question it is given that A=[a+ibc+id c+idaib ]A=\left[ \begin{matrix} a+ib & c+id \\\ -c+id & a-ib \\\ \end{matrix} \right].
The minor of aij{{a}_{ij}} is represented by Mij{{M}_{ij}} and for example for any 3×33\times 3 matrix the minor of a21{{a}_{21}} is represented by M21{{M}_{21}} and is given by a12a13 a32a23 \left| \begin{matrix} {{a}_{12}} & {{a}_{13}} \\\ {{a}_{32}} & {{a}_{23}} \\\ \end{matrix} \right|.
The cofactor of aij{{a}_{ij}} is represented by Cij{{C}_{ij}} is given by Cij=(1)i+jMij{{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}} .
The cofactor matrix is formed with all the respective cofactors as the elements.
The transpose of a matrix AA is given by interchanging all the rows of the matrix with the respective columns.
The adjoint of a matrix AA is given as the transpose of the cofactor matrix.
The determinant of a matrix A=[a11a12 a21a22 ]A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right] is given by A=a11a22a12a21\left| A \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} .
By using this for the given matrix we will have A=(a+ib)(aib)(c+id)(c+id)\left| A \right|=\left( a+ib \right)\left( a-ib \right)-\left( c+id \right)\left( -c+id \right) .
By simplifying this we will have A=a2+b2(c2d2)=a2+b2+c2+d2\left| A \right|={{a}^{2}}+{{b}^{2}}-\left( -{{c}^{2}}-{{d}^{2}} \right)={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}} .
As it is given in the question that the value of the expression is a2+b2+c2+d2=1{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}=1 using this we will have A=1\left| A \right|=1 .
Since we know that the inverse of a matrix is given by A1=adj(A)A{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|} . We need to find the value of adjoint for the sake of finding the inverse.
The adjoint of a matrix A=[a11a12 a21a22 ]A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right] is given as the transpose of the cofactor matrix.
The cofactor of a11{{a}_{11}} is given as a22{{a}_{22}} .
The cofactor of a21{{a}_{21}} is given as a12-{{a}_{12}} .
The cofactor of a12{{a}_{12}} is given as a21-{{a}_{21}} .
The cofactor of a22{{a}_{22}} is given as a11{{a}_{11}}.
Now we have the cofactor matrix as [a22a21 a12a11 ]\left[ \begin{matrix} {{a}_{22}} & -{{a}_{21}} \\\ -{{a}_{12}} & {{a}_{11}} \\\ \end{matrix} \right] .
The transpose of the cofactor matrix that is the adjoint matrix is given as [a22a12 a21a11 ]\left[ \begin{matrix} {{a}_{22}} & -{{a}_{12}} \\\ -{{a}_{21}} & {{a}_{11}} \\\ \end{matrix} \right] .
Hence we will have the adjoint of the given matrix as adj(A)=[aibcid cida+ib ]adj\left( A \right)=\left[ \begin{matrix} a-ib & -c-id \\\ c-id & a+ib \\\ \end{matrix} \right].
Hence the inverse of the given matrix using adj(A)=[aibcid cida+ib ]adj\left( A \right)=\left[ \begin{matrix} a-ib & -c-id \\\ c-id & a+ib \\\ \end{matrix} \right] and A=1\left| A \right|=1 is given as A1=adj(A)A=[aibcid cida+ib ]1{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}=\dfrac{\left[ \begin{matrix} a-ib & -c-id \\\ c-id & a+ib \\\ \end{matrix} \right]}{1}.
Hence we end up with a conclusion that the inverse of A=[a+ibc+id c+idaib ]A=\left[ \begin{matrix} a+ib & c+id \\\ -c+id & a-ib \\\ \end{matrix} \right] where a2+b2+c2+d2=1{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}=1 will be A1=[aibcid cida+ib ]{{A}^{-1}}=\left[ \begin{matrix} a-ib & -c-id \\\ c-id & a+ib \\\ \end{matrix} \right].
Hence, option C is correct.

Note: While answering questions of this type we should take care that the while deriving the adjoint of the matrix it is given as adj(A)=[a22a12 a21a11 ]adj\left( A \right)=\left[ \begin{matrix} {{a}_{22}} & -{{a}_{12}} \\\ -{{a}_{21}} & {{a}_{11}} \\\ \end{matrix} \right] not adj(A)=[a11a12 a21a22 ]adj\left( A \right)=\left[ \begin{matrix} {{a}_{11}} & -{{a}_{12}} \\\ -{{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right] if we take this we will get the answer as A1=[a+ibcid cidaib ]{{A}^{-1}}=\left[ \begin{matrix} a+ib & -c-id \\\ c-id & a-ib \\\ \end{matrix} \right]. Then we will end up having a wrong answer as option A.