Solveeit Logo

Question

Question: If we are given a determinant \[\Delta =\left| \begin{aligned} & \begin{matrix} \cos \left(...

If we are given a determinant Δ=cos(α1β1)cos(α1β2)cos(α1β3)  cos(α2β1)cos(α2β2)cos(α2β3)  cos(α3β1)cos(α3β2)cos(α3β3)  \Delta =\left| \begin{aligned} & \begin{matrix} \cos \left( {{\alpha }_{1}}-{{\beta }_{1}} \right) & \cos \left( {{\alpha }_{1}}-{{\beta }_{2}} \right) & \cos \left( {{\alpha }_{1}}-{{\beta }_{3}} \right) \\\ \end{matrix} \\\ & \begin{matrix} \cos \left( {{\alpha }_{2}}-{{\beta }_{1}} \right) & \cos \left( {{\alpha }_{2}}-{{\beta }_{2}} \right) & \cos \left( {{\alpha }_{2}}-{{\beta }_{3}} \right) \\\ \end{matrix} \\\ & \begin{matrix} \cos \left( {{\alpha }_{3}}-{{\beta }_{1}} \right) & \cos \left( {{\alpha }_{3}}-{{\beta }_{2}} \right) & \cos \left( {{\alpha }_{3}}-{{\beta }_{3}} \right) \\\ \end{matrix} \\\ \end{aligned} \right| then the value of Δ\Delta equal to
(A) cosα1cosα2cosα3cosβ1cosβ2cosβ3\cos {{\alpha }_{1}}\cos {{\alpha }_{2}}\cos {{\alpha }_{3}}\cos {{\beta }_{1}}\cos {{\beta }_{2}}\cos {{\beta }_{3}}
(B) cosα1+cosα2+cosα3+cosβ1+cosβ2+cosβ3\cos {{\alpha }_{1}}+\cos {{\alpha }_{2}}+\cos {{\alpha }_{3}}+\cos {{\beta }_{1}}+\cos {{\beta }_{2}}+\cos {{\beta }_{3}}
(C) cos(α1β1)cos(α2β2)cos(α3β3)\cos \left( {{\alpha }_{1}}-{{\beta }_{1}} \right)\cos \left( {{\alpha }_{2}}-{{\beta }_{2}} \right)\cos \left( {{\alpha }_{3}}-{{\beta }_{3}} \right)
(D) 0

Explanation

Solution

Use the formula, cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+ \sin A\sin B and expand the terms cos(α1β1)\cos \left( {{\alpha }_{1}}-{{\beta }_{1}} \right) , cos(α1β2)\cos \left( {{\alpha }_{1}}-{{\beta }_{2}} \right) , cos(α1β3)\cos \left( {{\alpha }_{1}}-{{\beta }_{3}} \right) , cos(α2β1)\cos \left( {{\alpha }_{2}}-{{\beta }_{1}} \right) , cos(α2β2)\cos \left( {{\alpha }_{2}}-{{\beta }_{2}} \right) , cos(α2β3)\cos \left( {{\alpha }_{2}}-{{\beta }_{3}} \right) , cos(α3β1)\cos \left( {{\alpha }_{3}}-{{\beta }_{1}} \right) , cos(α3β2)\cos \left( {{\alpha }_{3}}-{{\beta }_{2}} \right) , and cos(α3β3)\cos \left( {{\alpha }_{3}}-{{\beta }_{3}} \right) . Now, split it as the multiplication of two determinants. Finally, use the property that the determinant value of a matrix is equal to zero if all the elements of a row or a column is equal to zero and get the answer.

Complete step-by-step solution
According to the question, we are given an expression for Δ\Delta and we are asked to find the value of
Δ\Delta .

& \begin{matrix} \cos \left( {{\alpha }_{1}}-{{\beta }_{1}} \right) & \cos \left( {{\alpha }_{1}}-{{\beta }_{2}} \right) & \cos \left( {{\alpha }_{1}}-{{\beta }_{3}} \right) \\\ \end{matrix} \\\ & \begin{matrix} \cos \left( {{\alpha }_{2}}-{{\beta }_{1}} \right) & \cos \left( {{\alpha }_{2}}-{{\beta }_{2}} \right) & \cos \left( {{\alpha }_{2}}-{{\beta }_{3}} \right) \\\ \end{matrix} \\\ & \begin{matrix} \cos \left( {{\alpha }_{3}}-{{\beta }_{1}} \right) & \cos \left( {{\alpha }_{3}}-{{\beta }_{2}} \right) & \cos \left( {{\alpha }_{3}}-{{\beta }_{3}} \right) \\\ \end{matrix} \\\ \end{aligned} \right|$$ ……………………………………………(1) We know the formula that $$\cos \left( A-B \right)=\cos A\cos B+ \sin A\sin B$$ ……………………………………….(2) Replacing A and B by $${{\alpha }_{1}}$$ and $${{\beta }_{1}}$$ in equation (2), we get $$\cos \left( {{\alpha }_{1}}-{{\beta }_{1}} \right)=\cos {{\alpha }_{1}}\cos {{\beta }_{1}}+\sin {{\alpha }_{1}}\sin {{\beta }_{1}}$$ ……………………………………….(3) Similarly, $$\cos \left( {{\alpha }_{1}}-{{\beta }_{2}} \right)=\cos {{\alpha }_{1}}\cos {{\beta }_{2}}+\sin {{\alpha }_{1}}\sin {{\beta }_{2}}$$ ………………………………………….(4) $$\cos \left( {{\alpha }_{1}}-{{\beta }_{3}} \right)=\cos {{\alpha }_{1}}\cos {{\beta }_{3}}+\sin {{\alpha }_{1}}\sin {{\beta }_{3}}$$ ……………………………………………(5) $$\cos \left( {{\alpha }_{2}}-{{\beta }_{1}} \right)=\cos {{\alpha }_{2}}\cos {{\beta }_{1}}+\sin {{\alpha }_{2}}\sin {{\beta }_{1}}$$ ……………………………………………(6) $$\cos \left( {{\alpha }_{2}}-{{\beta }_{2}} \right)=\cos {{\alpha }_{2}}\cos {{\beta }_{2}}+\sin {{\alpha }_{2}}\sin {{\beta }_{2}}$$ …………………………………………..(7) $$\cos \left( {{\alpha }_{2}}-{{\beta }_{3}} \right)=\cos {{\alpha }_{2}}\cos {{\beta }_{3}}+\sin {{\alpha }_{2}}\sin {{\beta }_{3}}$$ …………………………………………….(8) $$\cos \left( {{\alpha }_{3}}-{{\beta }_{1}} \right)=\cos {{\alpha }_{3}}\cos {{\beta }_{1}}+\sin {{\alpha }_{3}}\sin {{\beta }_{1}}$$ ………………………………………………..(9) $$\cos \left( {{\alpha }_{3}}-{{\beta }_{2}} \right)=\cos {{\alpha }_{3}}\cos {{\beta }_{2}}+\sin {{\alpha }_{3}}\sin {{\beta }_{2}}$$ ………………………………………………(10) $$\cos \left( {{\alpha }_{3}}-{{\beta }_{3}} \right)=\cos {{\alpha }_{3}}\cos {{\beta }_{3}}+\sin {{\alpha }_{3}}\sin {{\beta }_{3}}$$ …………………………………….(11) Now, using the above equations and on simplifying equation (1), we get $$\Delta =\left| \begin{aligned} & \begin{matrix} \cos {{\alpha }_{1}}\cos {{\beta }_{1}}+\sin {{\alpha }_{1}}\sin {{\beta }_{1}} & \cos {{\alpha }_{1}}\cos {{\beta }_{2}}+\sin {{\alpha }_{1}}\sin {{\beta }_{2}} & \cos {{\alpha }_{1}}\cos {{\beta }_{3}}+\sin {{\alpha }_{1}}\sin {{\beta }_{3}} \\\ \end{matrix} \\\ & \begin{matrix} \cos {{\alpha }_{2}}\cos {{\beta }_{1}}+\sin {{\alpha }_{2}}\sin {{\beta }_{1}} & \cos {{\alpha }_{2}}\cos {{\beta }_{2}}+\sin {{\alpha }_{2}}\sin {{\beta }_{2}} & \cos {{\alpha }_{2}}\cos {{\beta }_{3}}+\sin {{\alpha }_{2}}\sin {{\beta }_{3}} \\\ \end{matrix} \\\ & \begin{matrix} \cos {{\alpha }_{3}}\cos {{\beta }_{1}}+\sin {{\alpha }_{3}}\sin {{\beta }_{1}} & \cos {{\alpha }_{3}}\cos {{\beta }_{2}}+\sin {{\alpha }_{3}}\sin {{\beta }_{2}} & \cos {{\alpha }_{3}}\cos {{\beta }_{3}}+\sin {{\alpha }_{3}}\sin {{\beta }_{3}} \\\ \end{matrix} \\\ \end{aligned} \right|$$ ……………………………………………….(12) We can see that the above matrix is somewhat complex which needs to be simplified more. Let us break the above into the multiplication of two determinant matrices. On breaking the matrix shown in equation (12), we get $$\Delta =\left| \begin{aligned} & \begin{matrix} \cos {{\alpha }_{1}} & \sin {{\alpha }_{1}} & 0 \\\ \end{matrix} \\\ & \begin{matrix} \cos {{\alpha }_{2}} & \sin {{\alpha }_{2}} & 0 \\\ \end{matrix} \\\ & \begin{matrix} \cos {{\alpha }_{3}} & \sin {{\alpha }_{3}} & 0 \\\ \end{matrix} \\\ \end{aligned} \right|$$$\times$ $$\left| \begin{aligned} & \begin{matrix} \cos {{\beta }_{1}} & \cos {{\beta }_{2}} & \cos {{\beta }_{3}} \\\ \end{matrix} \\\ & \begin{matrix} \sin {{\beta }_{1}} & \,\sin {{\beta }_{2}} & \,\,\sin {{\beta }_{3}} \\\ \end{matrix} \\\ & \begin{matrix} \,\,\,\,\,\,0 & \,\,\,\,\,\,\,\,0 & \,\,\,\,\,\,\,\,\,\,0 \\\ \end{matrix} \\\ \end{aligned} \right|$$ …………………………………………(13) We know the property that the determinant value of matrix is equal to zero if all the elements of a row or a column is equal to zero ……………………………………(14) Now, using the property shown in equation (14) and on simplifying equation (13), we get $$\Delta =0\times 0=0$$ ……………………………………….(15) Therefore, the value of $$\Delta $$ is equal to zero. **Hence, the correct option is (D).** **Note:** Whenever this type of question appears where we are given a complex determinant then, try to break the given matrix expression as the product of two determinants. Now, use the property that the determinant value of the matrix is equal to zero if all the elements of a row or a column are equal to zero.