Question
Question: If we are given a determinant \[\Delta =\left| \begin{aligned} & \begin{matrix} \cos \left(...
If we are given a determinant Δ= cos(α1−β1) cos(α1−β2)cos(α1−β3)cos(α2−β1) cos(α2−β2)cos(α2−β3)cos(α3−β1) cos(α3−β2)cos(α3−β3) then the value of Δ equal to
(A) cosα1cosα2cosα3cosβ1cosβ2cosβ3
(B) cosα1+cosα2+cosα3+cosβ1+cosβ2+cosβ3
(C) cos(α1−β1)cos(α2−β2)cos(α3−β3)
(D) 0
Solution
Use the formula, cos(A−B)=cosAcosB+sinAsinB and expand the terms cos(α1−β1) , cos(α1−β2) , cos(α1−β3) , cos(α2−β1) , cos(α2−β2) , cos(α2−β3) , cos(α3−β1) , cos(α3−β2) , and cos(α3−β3) . Now, split it as the multiplication of two determinants. Finally, use the property that the determinant value of a matrix is equal to zero if all the elements of a row or a column is equal to zero and get the answer.
Complete step-by-step solution
According to the question, we are given an expression for Δ and we are asked to find the value of
Δ .