Solveeit Logo

Question

Question: If we are given \( 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}...

If we are given 2tan1(cosx)=tan1(cosec2x)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) , then find the value of x.
(a) π2\dfrac{\pi }{2} .
(b) π\pi .
(c) π6\dfrac{\pi }{6} .
(d) π3\dfrac{\pi }{3} .

Explanation

Solution

Hint : We convert 2tan1(cosx)2{{\tan }^{-1}}\left( \cos x \right) to tan1(cosx)+tan1(cosx){{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right) for applying tan1(a)+tan1(b)=tan1(a+b1ab){{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) . After applying the formula, we obtain a value for cosx\cos x . Using the value of cosx\cos x , we find the value of x. We verify by substituting the value of ‘x’ in the original given equation.

Complete step-by-step answer :
We are given 2tan1(cosx)=tan1(cosec2x)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) , and we need to find the value of ‘x’.
We have tan1(cosx)+tan1(cosx)=tan1(cosec2x){{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) .
We know that tan1(a)+tan1(b)=tan1(a+b1ab){{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) for ab<1.
We know the value of cos x lies in the interval [1,1]\left[ -1,1 \right] and the value of cosx×cosx\cos x\times \cos x lies in the interval [0,1]\left[ 0,1 \right] .
So, we have tan1(cosx+cosx1(cosx×cosx))=tan1(cosec2x){{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) .
We have tan1(2cosx1cos2x)=tan1(cosec2x){{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) .
We know from the trigonometric identity sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x .
We have tan1(2cosxsin2x)=tan1(cosec2x){{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) .
We know that cosecx=1sinx\operatorname{cosec}x=\dfrac{1}{\sin x} .
We have tan1(2cosx.cosec2x)=tan1(cosec2x){{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) .
We know that if tan1(x)=tan1(y){{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) , then x = y.
We have 2cosx.cosec2x=cosec2x2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x .
We have 2cos x = 1.
We have cosx=12\cos x=\dfrac{1}{2} .
We have x=cos1(12)x={{\cos }^{-1}}\left( \dfrac{1}{2} \right).
We have x=60ox={{60}^{o}} .
We know that π=180o\pi ={{180}^{o}} .
We have x=60o×180o180ox={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} .
We have x=π3x=\dfrac{\pi }{3}.
We got the value of ‘x’ as π3\dfrac{\pi }{3} .
Now, we verify the obtained result.
We have 2tan1(cos(π3))=tan1(cosec2(π3))2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) .
We know that cos(π3)=12\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} and cosec(π3)=23\operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} .
So, we have 2tan1(12)=tan1((23)2)2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) .
We have tan1(12)+tan1(12)=tan1(43){{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) .
Since, 12×12=14\dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} , which is less than 1, we use tan1(a)+tan1(b)=tan1(a+b1ab){{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) .
We have tan1(12+121(12×12))=tan1(43){{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) .
We have tan1(11(14))=tan1(43){{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) .
We have tan1(134)=tan1(43){{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) .
We have tan1(43)=tan1(43){{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) .
∴ We have proved that the value of ‘x’ is π3\dfrac{\pi }{3} .
So, the correct answer is “Option D”.

Note : We should not every time use tan1(a)+tan1(b)=tan1(a+b1ab){{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx (tan1x)\left( {{\tan }^{-1}}x \right) . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.