Solveeit Logo

Question

Question: If w is cube root of unity, then D= \(\left| \begin{matrix} x + 1 & \omega & \omega^{2} \\ \omega &...

If w is cube root of unity, then

D= x+1ωω2ωx+ω21ω21x+ω\left| \begin{matrix} x + 1 & \omega & \omega^{2} \\ \omega & x + \omega^{2} & 1 \\ \omega^{2} & 1 & x + \omega \end{matrix} \right| = ........

A

x3 + 1

B

x3 + w

C

x3 + w2

D

x3

Answer

x3

Explanation

Solution

R1 ® R1 + R2 + R3

D =6muxxxωx+ω21ω21x+ω6mu\left| \mspace{6mu}\begin{matrix} x & x & x \\ \omega & x + \omega^{2} & 1 \\ \omega^{2} & 1 & x + \omega \end{matrix}\mspace{6mu} \right|Q (1 + w + w2 = 0)

D = x 6mu111ωx+ω21ω21x+ω6mu\left| \mspace{6mu}\begin{matrix} 1 & 1 & 1 \\ \omega & x + \omega^{2} & 1 \\ \omega^{2} & 1 & x + \omega \end{matrix}\mspace{6mu} \right|

D = x6mu100ωx+ω2ω1xω2ω21ω2x+ω16mu\left| \mspace{6mu}\begin{matrix} 1 & 0 & 0 \\ \omega & x + \omega^{2}–\omega & 1 - x - \omega^{2} \\ \omega^{2} & 1 - \omega^{2} & x + \omega - 1 \end{matrix}\mspace{6mu} \right|

D = x[(x+w2 – w) (x +w –1) – (1–w2)(1– x– w2)]

D = x [x2] = x3