Solveeit Logo

Question

Question: If w is a complex cube root of unity, then the value of \(\frac{a + b\omega + c\omega^{2}}{c + a\om...

If w is a complex cube root of unity, then the value of

a+bω+cω2c+aω+bω2+a+bω+cω2b+cω+aω2\frac{a + b\omega + c\omega^{2}}{c + a\omega + b\omega^{2}} + \frac{a + b\omega + c\omega^{2}}{b + c\omega + a\omega^{2}} is

A

1

B

0

C

2

D

– 1

Answer

– 1

Explanation

Solution

Sol. a+bω+cω2aω+bω2+c+a+bω+cω2b+cω+aω2\frac{a + b\omega + c\omega^{2}}{a\omega + b\omega^{2} + c} + \frac{a + b\omega + c\omega^{2}}{b + c\omega + a\omega^{2}}

= 1ω(aω+bω2+cω3aω+bω2+c)+1ω2(aω2+bω3+cω4aω2+b+cω)\frac{1}{\omega}\left( \frac{a\omega + b\omega^{2} + c\omega^{3}}{a\omega + b\omega^{2} + c} \right) + \frac{1}{\omega^{2}}\left( \frac{a\omega^{2} + b\omega^{3} + c\omega^{4}}{a\omega^{2} + b + c\omega} \right)

= w + w2 = 1 (Q 1/w = w2 , Q w3 = 1)