Solveeit Logo

Question

Question: If w is a complex cube root of unity, then the matrix A = \(\begin{bmatrix} 1 & w^{2} & w \\ w^{2} ...

If w is a complex cube root of unity, then the matrix A =

[1w2ww2w1w1w2]\begin{bmatrix} 1 & w^{2} & w \\ w^{2} & w & 1 \\ w & 1 & w^{2} \end{bmatrix}is a-

A

Singular matrix

B

Non-singular matrix

C

Skew symmetric matrix

D

None of these

Answer

Singular matrix

Explanation

Solution

We have

|A|=[1w2ww2w1w1w2]\begin{bmatrix} 1 & w^{2} & w \\ w^{2} & w & 1 \\ w & 1 & w^{2} \end{bmatrix}=[1+w2+ww2ww2+w+1w1w+1+w21w2]\begin{bmatrix} 1 + w^{2} + w & w^{2} & w \\ w^{2} + w + 1 & w & 1 \\ w + 1 + w^{2} & 1 & w^{2} \end{bmatrix}

[Using C1 ® C1 + C2 + C3]

= [0w2w0w101w2]\begin{bmatrix} 0 & w^{2} & w \\ 0 & w & 1 \\ 0 & 1 & w^{2} \end{bmatrix} = 0

\ A is a singular matrix.