Solveeit Logo

Question

Question: If w be a complex cube root of unity, then \(\left| \begin{matrix} 1 & \omega & - \omega^{2}/2 \\ 1 ...

If w be a complex cube root of unity, then 1ωω2/2111110\left| \begin{matrix} 1 & \omega & - \omega^{2}/2 \\ 1 & 1 & 1 \\ 1 & - 1 & 0 \end{matrix} \right| is equal to-

A

0

B

1

C

w

D

w2

Answer

0

Explanation

Solution

D = –121ωω2112110\frac{1}{2}\left| \begin{matrix} 1 & \omega & \omega^{2} \\ 1 & 1 & - 2 \\ 1 & - 1 & 0 \end{matrix} \right|

By C1 ® C1 + C2 + C3

= –120ωω2012010\frac{1}{2}\left| \begin{matrix} 0 & \omega & \omega^{2} \\ 0 & 1 & - 2 \\ 0 & - 1 & 0 \end{matrix} \right| = 0