Question
Question: If w¹ 1 is cube root of unity and x + y + z ¹ 0 then \(\left| \begin{matrix} \frac{x}{1 + \omega} & ...
If w¹ 1 is cube root of unity and x + y + z ¹ 0 then 1+ωxω+ω2yω2+1zω+ω2yω2+1z1+ωxω2+1z1+ωxω+ω2y = 0 if
A
x2 + y2 + z2 = 0
B
x + yw + zw2 = or x = y = z
C
x ¹ y ¹ z ¹ 0
D
x = 2y = 3z
Answer
x + yw + zw2 = or x = y = z
Explanation
Solution
As 1 + w + w2 = 0
$\left| \begin{matrix}
- \frac{x}{\omega^{2}} & - y & - \frac{z}{\omega} \
- y & - \frac{z}{\omega} & - \frac{x}{\omega^{2}} \
- \frac{z}{\omega} & - \frac{x}{\omega^{2}} & - y \end{matrix} \right|$ = x3 + y3 + z3 – 3xyz
= 21 (x + y + z) {(x – y)2 + (y – z)2 + (z – x)2} = x + yw + zw2 (x2 + y2 w2 + z2w – xyw – yz – zxw2) The determinant varnishes
if x = y = z or x + yw + zw2 = 0