Solveeit Logo

Question

Question: If w¹ 1 is cube root of unity and x + y + z ¹ 0 then \(\left| \begin{matrix} \frac{x}{1 + \omega} & ...

If w¹ 1 is cube root of unity and x + y + z ¹ 0 then x1+ωyω+ω2zω2+1yω+ω2zω2+1x1+ωzω2+1x1+ωyω+ω2\left| \begin{matrix} \frac{x}{1 + \omega} & \frac{y}{\omega + \omega^{2}} & \frac{z}{\omega^{2} + 1} \\ \frac{y}{\omega + \omega^{2}} & \frac{z}{\omega^{2} + 1} & \frac{x}{1 + \omega} \\ \frac{z}{\omega^{2} + 1} & \frac{x}{1 + \omega} & \frac{y}{\omega + \omega^{2}} \end{matrix} \right| = 0 if

A

x2 + y2 + z2 = 0

B

x + yw + zw2 = or x = y = z

C

x ¹ y ¹ z ¹ 0

D

x = 2y = 3z

Answer

x + yw + zw2 = or x = y = z

Explanation

Solution

As 1 + w + w2 = 0

$\left| \begin{matrix}

  • \frac{x}{\omega^{2}} & - y & - \frac{z}{\omega} \
  • y & - \frac{z}{\omega} & - \frac{x}{\omega^{2}} \
  • \frac{z}{\omega} & - \frac{x}{\omega^{2}} & - y \end{matrix} \right|$ = x3 + y3 + z3 – 3xyz

= 12\frac{1}{2} (x + y + z) {(x – y)2 + (y – z)2 + (z – x)2} = x + yw + zw2 (x2 + y2 w2 + z2w – xyw – yz – zxw2) The determinant varnishes

if x = y = z or x + yw + zw2 = 0