Solveeit Logo

Question

Question: If vertices of an ellipse are \[{\text{( - 4,1),(6,1)}}\]and \[{\text{x - 2y = 2}}\]is a focal chord...

If vertices of an ellipse are ( - 4,1),(6,1){\text{( - 4,1),(6,1)}}and x - 2y = 2{\text{x - 2y = 2}}is a focal chord, then the equation of ellipse is
A) (x - 1)216 + (y - 1)225 = 1\dfrac{{{{{\text{(x - 1)}}}^{\text{2}}}}}{{{\text{16}}}}{\text{ + }}\dfrac{{{{{\text{(y - 1)}}}^{\text{2}}}}}{{{\text{25}}}}{\text{ = 1}}
B) (x - 1)225 + (y - 1)216 = 1\dfrac{{{{{\text{(x - 1)}}}^{\text{2}}}}}{{25}}{\text{ + }}\dfrac{{{{{\text{(y - 1)}}}^{\text{2}}}}}{{16}}{\text{ = 1}}
C) (x - 1)225 + (y - 1)29 = 1\dfrac{{{{{\text{(x - 1)}}}^{\text{2}}}}}{{25}}{\text{ + }}\dfrac{{{{{\text{(y - 1)}}}^{\text{2}}}}}{9}{\text{ = 1}}
D) (x - 1)29 + (y - 1)225 = 1\dfrac{{{{{\text{(x - 1)}}}^{\text{2}}}}}{9}{\text{ + }}\dfrac{{{{{\text{(y - 1)}}}^{\text{2}}}}}{{25}}{\text{ = 1}}

Explanation

Solution

Use the concept that the length of the major axis is 2a{\text{2a}}. And then the focal chord will pass through the focal point so let the focal point be (ae,0){\text{(ae,0)}}. As a is known and so calculate b, as e = 1 - b2a2{\text{e = }}\sqrt {{\text{1 - }}\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} and hence from here b can be calculated. Use the general equation of ellipse which is given as x2a2 + y2b2 = 1\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = 1}}, for centre(0,0){\text{(0,0)}}. Thus, the equation can be obtained.

Complete step by step solution: As per the given the vertex of ellipse are ( - 4,1),(6,1){\text{( - 4,1),(6,1)}} and the focal chord is given as x - 2y = 2{\text{x - 2y = 2}},
Let, (x1,y1)=(6,1)({x_1},{y_1}) = (6,1) and (x2,y2)=(4,1)({x_2},{y_2}) = ( - 4,1)
Diagram:

As per the diagram we can see that the length of major axis given here is 2a{\text{2a}}which is equal to(x1x2)=(6(4))=10({x_1} - {x_2}) = (6 - ( - 4)) = 10.
So,

2a = 10 a = 5  {\text{2a = 10}} \\\ \Rightarrow {\text{a = 5}} \\\

Here we can calculate the centre of ellipse as both the vertices are known, which are(x1,y1)=(6,1)({x_1},{y_1}) = (6,1) and (x2,y2)=(4,1)({x_2},{y_2}) = ( - 4,1)
So we use the section formula to calculate the centre of ellipse,
(x1+x22,y1+y22)\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)
On substituting the values (x1,y1)=(6,1)({x_1},{y_1}) = (6,1) and (x2,y2)=(4,1)({x_2},{y_2}) = ( - 4,1) we get,

(642,1+12) (22,22) (1,1)  \Rightarrow (\dfrac{{6 - 4}}{2},\dfrac{{1 + 1}}{2}{\text{)}} \\\ \Rightarrow (\dfrac{2}{2},\dfrac{2}{2}) \\\ \Rightarrow (1,1) \\\

And so the focal point of the ellipse can be given as (ae,1){\text{(ae,1)}},which will satisfy the focal chord x - 2y = 2{\text{x - 2y = 2}}
x - 2y = 2\therefore {\text{x - 2y = 2}}
On substituting the point (ae,1){\text{(ae,1)}}, we get,
ae - 2(1) = 2\Rightarrow {\text{ae - 2(1) = 2}}
On simplification we get,
ae = 4\Rightarrow {\text{ae = 4}}
Now as a = 5{\text{a = 5}},
e = 45\Rightarrow {\text{e = }}\dfrac{4}{5}
Hence, as we know the value of e, now calculate b using the formula e = 1 - b2a2{\text{e = }}\sqrt {{\text{1 - }}\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}
On substituting values of e and a we get,
45 = 1 - b252\Rightarrow \dfrac{{\text{4}}}{{\text{5}}}{\text{ = }}\sqrt {{\text{1 - }}\dfrac{{{{\text{b}}^{\text{2}}}}}{{{5^{\text{2}}}}}}
On squaring both the sides we get,
1625 = 1 - b225\Rightarrow \dfrac{{{\text{16}}}}{{{\text{25}}}}{\text{ = 1 - }}\dfrac{{{{\text{b}}^{\text{2}}}}}{{{\text{25}}}}
On rearranging we get,
b225 = 1 - 1625\Rightarrow \dfrac{{{{\text{b}}^{\text{2}}}}}{{{\text{25}}}}{\text{ = 1 - }}\dfrac{{{\text{16}}}}{{{\text{25}}}}
On simplification we get,
b225 = 925\Rightarrow \dfrac{{{{\text{b}}^{\text{2}}}}}{{{\text{25}}}}{\text{ = }}\dfrac{{\text{9}}}{{{\text{25}}}}
On further simplification of the above equation we get,
b2 = 9\Rightarrow {{\text{b}}^{\text{2}}}{\text{ = 9}}
On taking positive square root we get,
b = 3\Rightarrow {\text{b = 3}}
Hence, as we know the values of a and b and centre,and the equation of ellipse is (x - h)2a2 + (y - k)2b2 = 1\dfrac{{{{{\text{(x - h)}}}^{\text{2}}}}}{{{a^{\text{2}}}}}{\text{ + }}\dfrac{{{{{\text{(y - k)}}}^{\text{2}}}}}{{{b^{\text{2}}}}}{\text{ = 1}}, where (h,k) is centre,
On substituting the values of a = 5{\text{a = 5}},b = 3{\text{b = 3}}and centre as (1,1), we get,

(x - 1)252 + (y - 1)232 = 1 (x - 1)225 + (y - 1)29 = 1  \Rightarrow \dfrac{{{{{\text{(x - 1)}}}^{\text{2}}}}}{{{5^{\text{2}}}}}{\text{ + }}\dfrac{{{{{\text{(y - 1)}}}^{\text{2}}}}}{{{3^{\text{2}}}}}{\text{ = 1}} \\\ \Rightarrow \dfrac{{{{{\text{(x - 1)}}}^{\text{2}}}}}{{25}}{\text{ + }}\dfrac{{{{{\text{(y - 1)}}}^{\text{2}}}}}{9}{\text{ = 1}} \\\

Hence, option (c) is our required correct answer.

Note: You should always first draw the diagram and then proceed further to solve the question and proper calculations should be done.
An ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. As such, it generalizes a circle, which is the special type of ellipse in which the two focal points are the same.
Or
A plane curve whose sums of the distances of each point in its periphery from two fixed points, the foci, are always equal. It is a conic section formed by the intersection of a right circular cone by a plane that cuts the axis and the surface of the cone.