Solveeit Logo

Question

Question: If velocity of c, Plank’s constant h and gravitational constant G are taken as fundamental quantitie...

If velocity of c, Plank’s constant h and gravitational constant G are taken as fundamental quantities then the dimensions of length will be

A

chG\sqrt{\frac{ch}{G}}

B

hGc5\sqrt{\frac{hG}{c^{5}}}

C

hGc3\sqrt{\frac{hG}{c^{3}}}

D

hc3G\sqrt{\frac{hc^{3}}{G}}

Answer

hGc3\sqrt{\frac{hG}{c^{3}}}

Explanation

Solution

Let lcxhyGzl \propto c^{x}h^{y}G^{z}

l=kcxhyGzl = kc^{x}h^{y}G^{z}

Where k is a dimensionless constant and x, y and z are the exponents.

Equating dimension on both sides, we get[M0LT0]=[LT1]x[ML2T1]y[M1L3T2]z=[MyzLx+2y+3zTxy2z]\lbrack M^{0}LT^{0}\rbrack = \lbrack LT^{- 1}\rbrack^{x}\lbrack ML^{2}T^{- 1}\rbrack^{y}\lbrack M^{- 1}L^{3}T^{- 2}\rbrack^{z} = \lbrack M^{y - z}L^{x + 2y + 3z}T^{- x - y - 2z}\rbrack

Applying the principle of homogeneity of dimensions,

We get

y – z = 0 ….. (i)

x + 2y + 3y = 1 ….. (ii)

-x – y – 2z = 0 …… (iii)

On solving Eqs. (i), (ii) and (iii), we get

x=32,y=12,z=12l=hGc3x = - \frac{3}{2},y = \frac{1}{2},z = \frac{1}{2}\therefore l = \sqrt{\frac{hG}{c^{3}}}