Solveeit Logo

Question

Question: If velocity of a particle moving along a straight line changes with time as V(m/s) = 4 sin (π/2)t, ...

If velocity of a particle moving along a straight line changes with time as

V(m/s) = 4 sin (π/2)t, its average velocity over time interval t = 0 to t = 2(2n−1) sec, (n being any +ve integer) is,

A

8π(2n1)\frac{8}{\pi(2n - 1)} m/s

B

4π(2n1)\frac{4}{\pi(2n - 1)}m/s

C

Zero

D

16(2n1)π\frac{16(2n - 1)}{\pi} m/s

Answer

8π(2n1)\frac{8}{\pi(2n - 1)} m/s

Explanation

Solution

Displacement over the interval t = 0 to t = 2(2n − 1) seconds.

= 402(2n1)sin(π2t)dt=(8π)cos(π2t)02(2n1)4\int_{0}^{2(2n - 1)}{\sin\left( \frac{\pi}{2}t \right)dt} = - \left( \frac{8}{\pi} \right)\left| \cos\left( \frac{\pi}{2}t \right) \right|_{0}^{2(2n - 1)}

= (8π)[cosπ(2n1)cos0]=16πm- \left( \frac{8}{\pi} \right)\left\lbrack \cos\pi(2n - 1) - \cos 0 \right\rbrack = \frac{16}{\pi}m

⇒ average velocity = 162(2n1)π\frac{16}{2(2n - 1)\pi} = 8(2n1)π\frac{8}{(2n - 1)\pi}m/s.,

Hence (1) is correct