Solveeit Logo

Question

Physics Question on Motion in a plane

If vectors P=ai^+aj^+3k^\vec{P}=a\hat{i}+a\hat{j}+3\hat{k} and Q=ai^2j^k^Q=a\hat{i}-2\hat{j}-\hat{k} are perpendicular to each other, then the positive value of aa is

A

3

B

1

C

2

D

0

Answer

3

Explanation

Solution

Vector P=ai^+aj^+3k^\vec{P}=a\hat{i}+a\hat{j}+3\hat{k} and vector Q=ai^2j^k^. \vec{Q=}a\hat{i}-2\hat{j}-\hat{k}. If two vectors are perpendicular to each other, then P×Q=0\vec{P}\times\vec{Q}=0 or (ai^+aj^+3k^)×(ai^2j^k^)=0\left(a\hat{i}+a\hat{j}+3\hat{k}\right)\times\left(a\hat{i}-2\hat{j}-\hat{k}\right)=0 or a22a3=0. a^{2}-2a-3=0. Solving this quadratic equation, we get a=3a = 3 or 1-1. Therefore positive value of aa is 33.