Solveeit Logo

Question

Physics Question on Motion in a plane

If vectors A=cosωti^+sinωtj^ \overrightarrow{A} = \cos \, \omega t \, \widehat{ i} + \sin \, \omega \, t \widehat{j} and B=cosωt2i^+sinωt2j^ \overrightarrow{ B} = \cos \, \frac{ \omega \, t }{ 2} \widehat{i} + \sin \, \frac{ \omega \, t }{ 2} \widehat{j} are functions of time, then the value of tt at which they are orthogonal to each other is

A

t = πω\frac{ \pi}{ \omega }

B

t = 0

C

t = π4ω\frac{ \pi}{ 4 \omega }

D

t = π2ω\frac{ \pi}{2 \omega }

Answer

t = πω\frac{ \pi}{ \omega }

Explanation

Solution

Two vectors A \overrightarrow{A} and B\overrightarrow{ B} are orthogonal to each other, if their scalar product is zero i.e. A.B=0\overrightarrow{A} . \overrightarrow{ B} = 0.
Here, A=cosωti^+sinωtj^ \overrightarrow{ A} = \cos \omega t \widehat{i} + \sin \omega t \widehat{j}
and B=cosωt2i^+sinωt2j^ \overrightarrow{ B} = \cos \frac{ \omega t}{ 2} \widehat{i} + \sin \frac{ \omega t }{ 2} \widehat{j}
AB=(cosωti^+sinωtj^)(cosωt2i^+sinωt2j^)\therefore \overrightarrow{A} \cdot \overrightarrow{ B} = ( \cos \, \omega t \widehat{i} + \sin \, \omega t \widehat{j} ) \cdot \bigg( \cos \frac{ \omega t}{ 2} \widehat{i} + \sin \frac{ \omega t }{ 2} \widehat{j} \bigg)
=cosωtcosωt2+sinωtsinωt2= \cos \omega t \cos \frac{ \omega t }{ 2} + \sin \omega t \sin \frac{ \omega t }{ 2}
(i^i^=j^j^=1andi^j^=j^i^=0)( \because \widehat{i} \cdot \widehat{i} = \widehat{j} \cdot \widehat{j} = 1 \, and \, \widehat{i} \cdot \widehat{j} = \widehat{j} \cdot \widehat{i} = 0 )
=cos(ωtωt2)= \cos \bigg( \omega t - \frac{ \omega t }{ 2} \bigg) (cos(AB)=cosAcosB+sinAsinB) ( \because \cos (A - B) = cos A \cos B + sin A sin B)
But AB=0 \overrightarrow{A} \cdot \overrightarrow{B} = 0 ( as A \overrightarrow{A} and B\overrightarrow{B} are orthogonal to each other).
cos(ωtωt2)=0\therefore \cos \bigg( \omega t - \frac{ \omega t}{ 2} \bigg) = 0
cos(ωtωt2)=cosπ2cos \bigg( \omega t - \frac{ \omega t}{ 2} \bigg) = \cos \frac{ \pi}{ 2} or ωtωt2=π2\omega t - \frac{ \omega t}{ 2} = \frac{ \pi}{ 2}
ωt2=π2\frac{ \omega t}{ 2} = \frac{ \pi} { 2} or t=πωt = \frac{ \pi}{ \omega}