Solveeit Logo

Question

Question: If vectors \(\mathbf{a},b,\mathbf{c}\) satisfy the condition \(|\mathbf{a} - \mathbf{c}| = |\mathbf{...

If vectors a,b,c\mathbf{a},b,\mathbf{c} satisfy the condition ac=bc|\mathbf{a} - \mathbf{c}| = |\mathbf{b} - \mathbf{c}|, then (ba).(ca+b2)(\mathbf{b} - \mathbf{a}).\left( \mathbf{c} - \frac{\mathbf{a} + \mathbf{b}}{\mathbf{2}} \right)is equal to

A

0

B

–1

C

1

D

2

Answer

0

Explanation

Solution

(ba).(ca+b2)=b.cb.(a+b2)a.c+a2(a+b)(\mathbf{b} - \mathbf{a}).\left( \mathbf{c} - \frac{\mathbf{a} + \mathbf{b}}{2} \right) = \mathbf{b}.\mathbf{c} - \mathbf{b}.\left( \frac{\mathbf{a} + \mathbf{b}}{2} \right) - \mathbf{a}.\mathbf{c} + \frac{\mathbf{a}}{2}(\mathbf{a} + \mathbf{b})

and ac=bc|\mathbf{a} - \mathbf{c}| = |\mathbf{b} - \mathbf{c}| \Rightarrow ac2=bc2|\mathbf{a} - \mathbf{c}|^{2} = |\mathbf{b} - \mathbf{c}|^{2}

a+b=2c\mathbf{a} + \mathbf{b} = 2\mathbf{c}

Therefore, (ba).(ca+b2)=0.(\mathbf{b} - \mathbf{a}).\left( \mathbf{c} - \frac{\mathbf{a} + \mathbf{b}}{2} \right) = 0.