Solveeit Logo

Question

Mathematics Question on Vector Algebra

If vector equation of the linex22=2y53=z+1,\frac{x-2}{2}=\frac{2y-5}{-3}=z+1, is r=(2i^+52j^k^)+λ(2i^32j^+pk^)\vec{r}=\left(2\hat{i}+\frac{5}{2} \hat{j}-\hat{k}\right)+\lambda\left(2\hat{i}-\frac{3}{2} \hat{j}+p\hat{k}\right) then pp is equal to

A

00

B

11

C

22

D

33

Answer

00

Explanation

Solution

The given line is x22=2y53=z+1,\frac{x-2}{2}=\frac{2y-5}{-3}=z+1,
x22=y5232=z+10\Rightarrow \frac{x-2}{2}=\frac{y-\frac{5}{2}}{-\frac{3}{2}}=\frac{z+1}{0}
This shows that the given line passes through the point (2,52,1)\left(2, \frac{5}{2}, -1\right) and has direction ratios (2,32,0).\left(2, -\frac{3}{2}, 0\right). Thus, given line passes through the point having position vector a=2i^+52j^k^\vec{a}=2\hat{i}+\frac{5}{2} \hat{j}-\hat{k} and is parallel to the vector
b=(2i^+32j^0k^)\vec{b}=\left(2\hat{i}+\frac{3}{2} \hat{j}-0\hat{k}\right). So, its vector equation is
r=(2i^+52j^k^)+λ(2i^32j^0k^).\vec{r}=\left(2\hat{i}+\frac{5}{2} \hat{j}-\hat{k}\right)+\lambda\left(2\hat{i}-\frac{3}{2} \hat{j}-0\hat{k}\right).
Hence, p=0p = 0