Solveeit Logo

Question

Question: If $\vec{a}=\hat{i}+\hat{j}+2\hat{k}$, $\vec{b}=\hat{i}+2\hat{j}+2\hat{k}$ and $|\vec{c}|=1$ such th...

If a=i^+j^+2k^\vec{a}=\hat{i}+\hat{j}+2\hat{k}, b=i^+2j^+2k^\vec{b}=\hat{i}+2\hat{j}+2\hat{k} and c=1|\vec{c}|=1 such that [a×b b×c c×a][\vec{a}\times\vec{b}\ \vec{b}\times\vec{c}\ \vec{c}\times\vec{a}] has maximum value, then the value of (a×b)×c2|(\vec{a}\times\vec{b})\times\vec{c}|^2 is

A

0

B

1

C

4/3

D

none of these

Answer

0

Explanation

Solution

Solution:

  1. Express the given scalar triple product in a different form:

We are given

[a×b b×c c×a],[\vec{a}\times\vec{b}\ \vec{b}\times\vec{c}\ \vec{c}\times\vec{a}],

which is the scalar triple product of a×b\vec{a}\times\vec{b}, b×c\vec{b}\times\vec{c}, and c×a\vec{c}\times\vec{a}. Using the vector identity

p(q×r)=[p,q,r],\vec{p}\cdot (\vec{q}\times \vec{r}) = [\vec{p},\vec{q},\vec{r}],

and after some manipulation it can be shown that

[a×b b×c c×a]=[a,b,c]2,[\vec{a}\times\vec{b}\ \vec{b}\times\vec{c}\ \vec{c}\times\vec{a}] = [\vec{a},\vec{b},\vec{c}]^2,

where

[a,b,c]=a(b×c)=c(a×b).[\vec{a},\vec{b},\vec{c}] = \vec{a}\cdot(\vec{b}\times\vec{c}) = \vec{c}\cdot(\vec{a}\times\vec{b}).
  1. Maximization condition:

Since c=1|\vec{c}| = 1, we have

[a,b,c]=c(a×b)=a×bcosθ.[\vec{a},\vec{b},\vec{c}] = \vec{c}\cdot(\vec{a}\times\vec{b}) = |\vec{a}\times\vec{b}|\cos\theta.

To maximize [a,b,c]2[\vec{a},\vec{b},\vec{c}]^2, we require cosθ=1|\cos\theta| = 1. This happens when c\vec{c} is parallel (or antiparallel) to a×b\vec{a}\times\vec{b}.

  1. Evaluating (a×b)×c2|(\vec{a}\times\vec{b})\times\vec{c}|^2:

When c\vec{c} is parallel to a×b\vec{a}\times\vec{b}, the vectors a×b\vec{a}\times\vec{b} and c\vec{c} are parallel. The cross product of two parallel vectors is zero. Hence,

(a×b)×c=0.(\vec{a}\times\vec{b})\times\vec{c} = \vec{0}.

Therefore,

(a×b)×c2=0.|(\vec{a}\times\vec{b})\times\vec{c}|^2 = 0.