Question
Question: If $\vec{a}$ and $\vec{b}$ are vectors such that $|\vec{a}|=2$, $|\vec{b}|=1$, $\vec{a}\^\vec{b}=\fr...
If a and b are vectors such that ∣a∣=2, ∣b∣=1, \vec{a}\^\vec{b}=\frac{\pi}{3} and c satisfies 2(a+b)+c=b×c, then the value of ∣(a×c).b∣ is -

0
1
2
3
3
Solution
The problem asks for ∣(a×c).b∣, which is the absolute value of the scalar triple product ∣[a,c,b]∣. By the properties of the scalar triple product, ∣[a,c,b]∣=∣[a,b,c]∣.
Given: ∣a∣=2, ∣b∣=1, and the angle between a and b is 3π. The dot product a⋅b=∣a∣∣b∣cos(3π)=(2)(1)(21)=1.
The given vector equation is 2(a+b)+c=b×c. This can be written as 2a+2b+c=b×c. Taking the dot product with b: (2a+2b+c)⋅b=(b×c)⋅b. Since (b×c)⋅b=0, we have: 2a⋅b+2b⋅b+c⋅b=0. Substituting known values: 2(1)+2(∣b∣2)+c⋅b=0. 2+2(12)+c⋅b=0⟹4+c⋅b=0⟹c⋅b=−4.
Let c=c∥+c⊥, where c∥ is parallel to b and c⊥ is perpendicular to b. c∥=(c⋅b^)b^=(c⋅b)b (since ∣b∣=1). So, c∥=−4b. Thus, c=−4b+c⊥.
Substitute this into the original vector equation: 2a+2b+(−4b+c⊥)=b×(−4b+c⊥). 2a−2b+c⊥=−4(b×b)+b×c⊥. Since b×b=0, we get 2a−2b+c⊥=b×c⊥.
Now, we want to find [a,b,c]=[a,b,−4b+c⊥]. Using linearity: [a,b,−4b]+[a,b,c⊥]. Since [a,b,b]=0, this simplifies to [a,b,c⊥].
From 2a−2b+c⊥=b×c⊥, take the dot product with a: (2a−2b+c⊥)⋅a=(b×c⊥)⋅a. 2∣a∣2−2a⋅b+a⋅c⊥=[a,b,c⊥]. 2(22)−2(1)+a⋅c⊥=[a,b,c⊥]. 8−2+a⋅c⊥=[a,b,c⊥]⟹6+a⋅c⊥=[a,b,c⊥].
Consider the magnitude squared of 2a−2b+c⊥=b×c⊥. ∣b×c⊥∣=∣b∣∣c⊥∣sin(2π)=(1)∣c⊥∣(1)=∣c⊥∣. So, ∣2a−2b+c⊥∣2=∣c⊥∣2. (2a−2b+c⊥)⋅(2a−2b+c⊥)=∣c⊥∣2. ∣2a−2b∣2+∣c⊥∣2+2(2a−2b)⋅c⊥=∣c⊥∣2. ∣2a−2b∣2+2(2a⋅c⊥−2b⋅c⊥)=0. ∣2a−2b∣2=(2a−2b)⋅(2a−2b)=4∣a∣2−8a⋅b+4∣b∣2=4(4)−8(1)+4(1)=16−8+4=12. Since b⋅c⊥=0: 12+2(2a⋅c⊥−0)=0⟹12+4a⋅c⊥=0⟹a⋅c⊥=−3.
Substitute a⋅c⊥=−3 into 6+a⋅c⊥=[a,b,c⊥]: 6+(−3)=[a,b,c⊥]⟹[a,b,c⊥]=3. Therefore, ∣[a,c,b]∣=∣[a,b,c]∣=∣[a,b,c⊥]∣=∣3∣=3.
