Solveeit Logo

Question

Question: If $\vec{a}$ and $\vec{b}$ are vectors such that $|\vec{a}|=2$, $|\vec{b}|=1$, $\vec{a}\^\vec{b}=\fr...

If a\vec{a} and b\vec{b} are vectors such that a=2|\vec{a}|=2, b=1|\vec{b}|=1, \vec{a}\^\vec{b}=\frac{\pi}{3} and c\vec{c} satisfies 2(a+b)+c=b×c2(\vec{a}+\vec{b})+\vec{c}=\vec{b}\times\vec{c}, then the value of (a×c).b|(\vec{a}\times\vec{c}).\vec{b}| is -

A

0

B

1

C

2

D

3

Answer

3

Explanation

Solution

The problem asks for (a×c).b|(\vec{a}\times\vec{c}).\vec{b}|, which is the absolute value of the scalar triple product [a,c,b]|[\vec{a}, \vec{c}, \vec{b}]|. By the properties of the scalar triple product, [a,c,b]=[a,b,c]|[\vec{a}, \vec{c}, \vec{b}]| = |[\vec{a}, \vec{b}, \vec{c}]|.

Given: a=2|\vec{a}|=2, b=1|\vec{b}|=1, and the angle between a\vec{a} and b\vec{b} is π3\frac{\pi}{3}. The dot product ab=abcos(π3)=(2)(1)(12)=1\vec{a}\cdot\vec{b} = |\vec{a}||\vec{b}|\cos(\frac{\pi}{3}) = (2)(1)(\frac{1}{2}) = 1.

The given vector equation is 2(a+b)+c=b×c2(\vec{a}+\vec{b})+\vec{c}=\vec{b}\times\vec{c}. This can be written as 2a+2b+c=b×c2\vec{a} + 2\vec{b} + \vec{c} = \vec{b}\times\vec{c}. Taking the dot product with b\vec{b}: (2a+2b+c)b=(b×c)b(2\vec{a} + 2\vec{b} + \vec{c}) \cdot \vec{b} = (\vec{b}\times\vec{c}) \cdot \vec{b}. Since (b×c)b=0(\vec{b}\times\vec{c}) \cdot \vec{b} = 0, we have: 2ab+2bb+cb=02\vec{a}\cdot\vec{b} + 2\vec{b}\cdot\vec{b} + \vec{c}\cdot\vec{b} = 0. Substituting known values: 2(1)+2(b2)+cb=02(1) + 2(|\vec{b}|^2) + \vec{c}\cdot\vec{b} = 0. 2+2(12)+cb=0    4+cb=0    cb=42 + 2(1^2) + \vec{c}\cdot\vec{b} = 0 \implies 4 + \vec{c}\cdot\vec{b} = 0 \implies \vec{c}\cdot\vec{b} = -4.

Let c=c+c\vec{c} = \vec{c}_{\parallel} + \vec{c}_{\perp}, where c\vec{c}_{\parallel} is parallel to b\vec{b} and c\vec{c}_{\perp} is perpendicular to b\vec{b}. c=(cb^)b^=(cb)b\vec{c}_{\parallel} = (\vec{c}\cdot\hat{b})\hat{b} = (\vec{c}\cdot\vec{b})\vec{b} (since b=1|\vec{b}|=1). So, c=4b\vec{c}_{\parallel} = -4\vec{b}. Thus, c=4b+c\vec{c} = -4\vec{b} + \vec{c}_{\perp}.

Substitute this into the original vector equation: 2a+2b+(4b+c)=b×(4b+c)2\vec{a} + 2\vec{b} + (-4\vec{b} + \vec{c}_{\perp}) = \vec{b}\times(-4\vec{b} + \vec{c}_{\perp}). 2a2b+c=4(b×b)+b×c2\vec{a} - 2\vec{b} + \vec{c}_{\perp} = -4(\vec{b}\times\vec{b}) + \vec{b}\times\vec{c}_{\perp}. Since b×b=0\vec{b}\times\vec{b} = \vec{0}, we get 2a2b+c=b×c2\vec{a} - 2\vec{b} + \vec{c}_{\perp} = \vec{b}\times\vec{c}_{\perp}.

Now, we want to find [a,b,c]=[a,b,4b+c][\vec{a}, \vec{b}, \vec{c}] = [\vec{a}, \vec{b}, -4\vec{b} + \vec{c}_{\perp}]. Using linearity: [a,b,4b]+[a,b,c][\vec{a}, \vec{b}, -4\vec{b}] + [\vec{a}, \vec{b}, \vec{c}_{\perp}]. Since [a,b,b]=0[\vec{a}, \vec{b}, \vec{b}] = 0, this simplifies to [a,b,c][\vec{a}, \vec{b}, \vec{c}_{\perp}].

From 2a2b+c=b×c2\vec{a} - 2\vec{b} + \vec{c}_{\perp} = \vec{b}\times\vec{c}_{\perp}, take the dot product with a\vec{a}: (2a2b+c)a=(b×c)a(2\vec{a} - 2\vec{b} + \vec{c}_{\perp}) \cdot \vec{a} = (\vec{b}\times\vec{c}_{\perp}) \cdot \vec{a}. 2a22ab+ac=[a,b,c]2|\vec{a}|^2 - 2\vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c}_{\perp} = [\vec{a}, \vec{b}, \vec{c}_{\perp}]. 2(22)2(1)+ac=[a,b,c]2(2^2) - 2(1) + \vec{a}\cdot\vec{c}_{\perp} = [\vec{a}, \vec{b}, \vec{c}_{\perp}]. 82+ac=[a,b,c]    6+ac=[a,b,c]8 - 2 + \vec{a}\cdot\vec{c}_{\perp} = [\vec{a}, \vec{b}, \vec{c}_{\perp}] \implies 6 + \vec{a}\cdot\vec{c}_{\perp} = [\vec{a}, \vec{b}, \vec{c}_{\perp}].

Consider the magnitude squared of 2a2b+c=b×c2\vec{a} - 2\vec{b} + \vec{c}_{\perp} = \vec{b}\times\vec{c}_{\perp}. b×c=bcsin(π2)=(1)c(1)=c|\vec{b}\times\vec{c}_{\perp}| = |\vec{b}||\vec{c}_{\perp}|\sin(\frac{\pi}{2}) = (1)|\vec{c}_{\perp}|(1) = |\vec{c}_{\perp}|. So, 2a2b+c2=c2|2\vec{a} - 2\vec{b} + \vec{c}_{\perp}|^2 = |\vec{c}_{\perp}|^2. (2a2b+c)(2a2b+c)=c2(2\vec{a} - 2\vec{b} + \vec{c}_{\perp})\cdot(2\vec{a} - 2\vec{b} + \vec{c}_{\perp}) = |\vec{c}_{\perp}|^2. 2a2b2+c2+2(2a2b)c=c2|2\vec{a} - 2\vec{b}|^2 + |\vec{c}_{\perp}|^2 + 2(2\vec{a} - 2\vec{b})\cdot\vec{c}_{\perp} = |\vec{c}_{\perp}|^2. 2a2b2+2(2ac2bc)=0|2\vec{a} - 2\vec{b}|^2 + 2(2\vec{a}\cdot\vec{c}_{\perp} - 2\vec{b}\cdot\vec{c}_{\perp}) = 0. 2a2b2=(2a2b)(2a2b)=4a28ab+4b2=4(4)8(1)+4(1)=168+4=12|2\vec{a} - 2\vec{b}|^2 = (2\vec{a}-2\vec{b})\cdot(2\vec{a}-2\vec{b}) = 4|\vec{a}|^2 - 8\vec{a}\cdot\vec{b} + 4|\vec{b}|^2 = 4(4) - 8(1) + 4(1) = 16 - 8 + 4 = 12. Since bc=0\vec{b}\cdot\vec{c}_{\perp} = 0: 12+2(2ac0)=0    12+4ac=0    ac=312 + 2(2\vec{a}\cdot\vec{c}_{\perp} - 0) = 0 \implies 12 + 4\vec{a}\cdot\vec{c}_{\perp} = 0 \implies \vec{a}\cdot\vec{c}_{\perp} = -3.

Substitute ac=3\vec{a}\cdot\vec{c}_{\perp} = -3 into 6+ac=[a,b,c]6 + \vec{a}\cdot\vec{c}_{\perp} = [\vec{a}, \vec{b}, \vec{c}_{\perp}]: 6+(3)=[a,b,c]    [a,b,c]=36 + (-3) = [\vec{a}, \vec{b}, \vec{c}_{\perp}] \implies [\vec{a}, \vec{b}, \vec{c}_{\perp}] = 3. Therefore, [a,c,b]=[a,b,c]=[a,b,c]=3=3|[\vec{a}, \vec{c}, \vec{b}]| = |[\vec{a}, \vec{b}, \vec{c}]| = |[\vec{a}, \vec{b}, \vec{c}_{\perp}]| = |3| = 3.