Solveeit Logo

Question

Mathematics Question on Vector Algebra

If u,v,w\vec{u}, \vec{v}, \vec{w} are non-coplanar vectors and p,qp, q are real numbers, then the equality [3upvpw][pvwqu][2wqvqu]=0\left[3\vec{u}\, p\vec{v}\,p\vec{w}\right]-\left[p\vec{v}\,\vec{w}\,q\vec{u}\right]-\left[2\vec{w}\,q\vec{v}\,q\vec{u}\right]=0 holds for

A

exactly one value of (p,q)(p, q)

B

exactly two values of (p,q)(p, q)

C

more than two but not all values of (p,q)(p , q)

D

all values of (p,q)(p, q)

Answer

exactly one value of (p,q)(p, q)

Explanation

Solution

(3p2pq+2q2)[uvw]=0\left(3p^{2}-pq+2q^{2}\right)\left[\overrightarrow{u}\,\overrightarrow{v}\,\overrightarrow{w}\,\right]=0 But [uvw]0\left[\overrightarrow{u}\,\overrightarrow{v}\,\overrightarrow{w}\,\right]\ne0 3p2pq+2q2=03p^{2}-pq+2q^{2}=0 2p2+p2pq+(q2)2+7q24=02p2+(pq2)2+74q2=02p^{2}+p^{2}-pq+\left(\frac{q}{2}\right)^{2}+\frac{7q^{2}}{4}=0 \Rightarrow 2p^{2}+\left(p-\frac{q}{2}\right)^{2}+\frac{7}{4}q^{2}=0 p=0,q=0,p=q2\Rightarrow p = 0, q = 0, p=\frac{q}{2} This possible only when p=0,q=0p = 0, q = 0 exactly one value of (p,q)\left(p, q\right)