Question
Question: If \( \vec u = \hat j + 4\hat k \) , \( \vec v = \hat i - 3\hat k \) , and \( \vec w = \cos \theta \...
If u=j^+4k^ , v=i^−3k^ , and w=cosθi^+sinθj^ are vectors in 3 – dimensional space, then, the maximum possible value of ∣u×v.w∣ is?
A) 14
B) 5
C) 7
D) 13
Solution
Hint : We need to find the determinant of the given quantity, we can ignore the type of product signs amongst them, then an equation of function will be obtained by the derivative of it we can find its maximum value.
tanθ=BP,sinθ=HP,cosθ=HB
Where P is the perpendicular, B is base and H is hypotenuse.
Complete step-by-step answer :
We have been given three vectors: u=j^+4k^ , v=i^−3k^ and w=cosθi^+sinθj^ and we are required to find their determinant. We do not need to consider their sign of product (dot or cross).
The given vectors with all the unit vectors can be written as:
u=0i^+j^+4k^ , v=i^+0j^−3k^ , w=cosθi^+sinθj^+0k^
We can find the required determinant using the coefficients of the unit vectors.
\Rightarrow \left| {\vec u \times \vec v.\vec w} \right| = \left[ {0\left( {0 \times 0 - ( - 3)\sin \theta } \right)} \right] - 1\left[ {1 \times 0 - ( - 3)\cos \theta } \right] + 4\left[ {1 \times \sin \theta + 0 \times \cos \theta } \right] \\
\left| {\vec u \times \vec v.\vec w} \right| = - 3\cos \theta + 4\sin \theta \\
\left| {\vec u \times \vec v.\vec w} \right| = 4\sin \theta - 3\cos \theta \\