Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

If F\vec{F} is the force acting on a particle having position vector r\vec{r} and τ\vec{\tau} be the torque of this force about the origin, then

A

rτ>0\vec{r}\cdot \vec{\tau} > 0 and Fτ<0 \vec{F}\cdot \vec{\tau} < 0

B

rτ=0\vec{r}\cdot \vec{\tau} = 0 and Fτ=0\vec{F}\cdot \vec{\tau} = 0

C

rτ=0\vec{r}\cdot \vec{\tau} = 0 and Fτ0 \vec{F}\cdot \vec{\tau} \ne 0

D

rτ0\vec{r}\cdot \vec{\tau} \ne 0 and Fτ=0 \vec{F}\cdot \vec{\tau} = 0

Answer

rτ=0\vec{r}\cdot \vec{\tau} = 0 and Fτ=0\vec{F}\cdot \vec{\tau} = 0

Explanation

Solution

τ=r×F\vec{\tau}=\vec{ r } \times \vec{ F }
τ\vec{\tau} is perpendicular to r\vec{ r } and F\vec{ F }.