Solveeit Logo

Question

Mathematics Question on Vectors

If α=i^3j^,β=i^+2j^k^\vec{\alpha}=\hat{i}-3\hat{j},\vec{\beta}=\hat{i}+2\hat{j}-\hat{k} then express If |a×b|+|a.b|=36 and |a|=3 then |b| is equal toβ\vec{\beta} in the form β=β1+β2\vec{β}=\vec{β_1}+\vec{β_2} where β1\vec{β}_1 is parellel to α\vec{\alpha} and β2\vec{β}_2 is perpendicular to α\vec{\alpha} then β1\vec{β_1} is given by

A

58(i^3j^)\frac{5}{8}(\hat{i}-3\hat{j})

B

i^3j^\hat{i}-3\hat{j}

C

58(i^+3j^)\frac{5}{8}(\hat{i}+3\hat{j})

D

i^+3j^\hat{i}+3\hat{j}

Answer

58(i^+3j^)\frac{5}{8}(\hat{i}+3\hat{j})

Explanation

Solution

The correct answer is (C) : 58(i^+3j^)\frac{5}{8}(\hat{i}+3\hat{j}).