Solveeit Logo

Question

Question: If \( \vec a \) , \( \vec b \) , \( \vec c \) are three vectors such that \( \vec a \times \vec b = ...

If a\vec a , b\vec b , c\vec c are three vectors such that a×b=c\vec a \times \vec b = \vec c and b×c=a\vec b \times \vec c = \vec a , then
1. abc\vec a \ne \vec b \ne \vec c
2. a=b=c\vec a = \vec b = \vec c
3. abc1\vec a \ne \vec b \ne \vec c \ne 1
4. a\vec a , b\vec b , c\vec c are orthogonal in pairs

Explanation

Solution

Hint : In the question it is given that a×b=c\vec a \times \vec b = \vec c and b×c=a\vec b \times \vec c = \vec a . First we have to substitute the value of vector a\vec a in the equation a×b=c\vec a \times \vec b = \vec c
Now the equation becomes (b×c)×b=c\left( {\vec b \times \vec c} \right) \times \vec b = \vec c
Next we have to substitute value of vector c\vec c in the equation b×c=a\vec b \times \vec c = \vec a
Now the equation becomes b×(a×b)=a\vec b \times \left( {\vec a \times \vec b} \right) = \vec a
We know that the formula for vector triple product of three vectors is given by,
a×(b×c)=(ac)b(ab)c\vec a \times \left( {\vec b \times \vec c} \right) = \left( {\vec a \cdot \vec c} \right)\vec b - \left( {\vec a \cdot \vec b} \right)\vec c , and
(a×b)×c=(ac)b(bc)a\left( {\vec a \times \vec b} \right) \times \vec c = \left( {\vec a \cdot \vec c} \right)\vec b - \left( {\vec b \cdot \vec c} \right)\vec a
Applying the formula of a vector triple product of three vectors we have to reduce the equations and solve them.

Complete step-by-step answer :
Let us consider the equations given in the question.
a×b=c(1)\vec a \times \vec b = \vec c - - - - - - - \left( 1 \right)
b×c=a(2)\vec b \times \vec c = \vec a - - - - - - - \left( 2 \right)
Substituting the equation (2)\left( 2 \right) in equation (1)\left( 1 \right) we get,
(b×c)×b=c\left( {\vec b \times \vec c} \right) \times \vec b = \vec c
Applying the formula of vector triple product we get,
(bb)c(cb)b=c\left( {\vec b \cdot \vec b} \right)\vec c - \left( {\vec c \cdot \vec b} \right)\vec b = \vec c
We know that bb=b2\vec b \cdot \vec b = {\left| b \right|^2} , hence the equation becomes
b2c(cb)b=c{\left| b \right|^2}\vec c - \left( {\vec c \cdot \vec b} \right)\vec b = \vec c
Comparing both the sides we get
b2=1{\left| b \right|^2} = 1 and (cb)=0\left( {\vec c \cdot \vec b} \right) = 0
We know that if the dot product of two vectors is zero then the vectors are orthogonal to each other or perpendicular to each other.
Therefore vectors c\vec c and b\vec b are perpendicular to each other.
Now, substituting the equation (1)\left( 1 \right) in equation (2)\left( 2 \right) we get,
b×(a×b)=a\vec b \times \left( {\vec a \times \vec b} \right) = \vec a
Applying the vector triple product formula of three vectors we get,
(bb)a(ba)b=a\left( {\vec b \cdot \vec b} \right)\vec a - \left( {\vec b \cdot \vec a} \right)\vec b = \vec a
We know that bb=b2\vec b \cdot \vec b = {\left| b \right|^2} , hence the equation becomes
b2a(ba)b=a{\left| b \right|^2}\vec a - \left( {\vec b \cdot \vec a} \right)\vec b = \vec a
Comparing both the sides we get
b2=1{\left| b \right|^2} = 1 and (ba)=0\left( {\vec b \cdot \vec a} \right) = 0
Therefore vectors b\vec b and a\vec a are orthogonal to each other.
This shows that vectors a\vec a , b\vec b , c\vec c are orthogonal in pairs.
So, the correct answer is “Option 4”.

Note : This can also be solved using the vector triple product properties.
According to the property,
If r=a×(b×c)\vec r = \vec a \times \left( {\vec b \times \vec c} \right)
Then vector r\vec r is perpendicular to vector a\vec a and remains in the plane of vector b\vec b and c\vec c .
Therefore the equation
b×(a×b)=a\vec b \times \left( {\vec a \times \vec b} \right) = \vec a implies that vector a\vec a is perpendicular to vector b\vec b and
(b×c)×b=c\left( {\vec b \times \vec c} \right) \times \vec b = \vec c implies that vector c\vec c is perpendicular to vector b\vec b .