Solveeit Logo

Question

Question: If \(\vec { a } , \vec { b } , \vec { c }\) are such that [ \(\vec { a } , \vec { b } , \vec { c }...

If a,b,c\vec { a } , \vec { b } , \vec { c } are such that [ a,b,c\vec { a } , \vec { b } , \vec { c } ] = 1, c=λ(a×b)\overrightarrow { \mathrm { c } } = \lambda ( \vec { a } \times \vec { b } ) ab<2π3\vec { a } ^ { \wedge } \vec { b } < \frac { 2 \pi } { 3 } , and a| \vec { a } | = 2\sqrt { 2 }, = , then the angle between and is

A

π6\frac { \pi } { 6 }

B

π4\frac { \pi } { 4 }

C

π3\frac { \pi } { 3 }

D

π2\frac { \pi } { 2 }

Answer

π4\frac { \pi } { 4 }

Explanation

Solution

1 =

13=19\frac { 1 } { 3 } = \frac { 1 } { 9 } = (a2 b2 sin2q) =19\frac { 1 } { 9 }× 2 × 3 sin2q

̃ sin2q = 12\frac { 1 } { 2 } \ q = π4\frac { \pi } { 4 }