Solveeit Logo

Question

Mathematics Question on Vectors

If a,b,c\vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors having magnitudes 1, 2, 3 respectively, then [a+b+cbac]=?[\vec{a} + \vec{b} + \vec{c} \, \, \vec{b} - \vec{a} - \vec{c}] = ?

A

0

B

6

C

12

D

18

Answer

12

Explanation

Solution

We have,
a,b\vec{a}, \vec{b} and c\vec{c} are mutually perpendicular vectors.
ab=bc=ac=0\therefore \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{c}=0
and a=1,b=2c=3|\vec{a}|=1,|\vec{b}|=2|\vec{c}|=3
Now, [a+b+cbac][\vec{a}+\vec{b}+\vec{c} \,\,\vec{b}-\vec{a} \,\,\vec{c}]
=(a+b+c)((ba)×c)=(\vec{a}+\vec{b}+\vec{c}) \cdot((\vec{b}-\vec{a}) \times \vec{c})
=(a+b+c)[(b×c)(a×c)]=(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{b} \times \vec{c})-(\vec{a} \times \vec{c})]
=a(b×c)a(a×c)+b(b×c)b(a×c)=\vec{a} \cdot(\vec{b} \times \vec{c})-\vec{a} \cdot(\vec{a} \times \vec{c})+\vec{b} \cdot(\vec{b} \times \vec{c})-\vec{b} \cdot(\vec{a} \times \vec{c})
+c(b×c)c(a×c)+\vec{c} \cdot(\vec{b} \times \vec{c})-\vec{c} \cdot(\vec{a} \times \vec{c})
=[abc][aac]+[bbc][bac]=[\vec{a} \,\,\vec{b}\,\, \vec{c}]-[\vec{a} \,\,\vec{a}\,\, \vec{c}]+[\vec{b} \,\,\vec{b} \,\,\vec{c}]-[\vec{b}\,\, \vec{a} \,\,\vec{c}]
+[cbc][cac]+[\vec{c}\, \vec{b} \,\vec{c}]-[\vec{c}\, \vec{a} \,\vec{c}]
=[abc]0+0+[abc]+00=[\vec{a} \,\vec{b} \,\vec{c}]-0+0+[\vec{a}\, \vec{b} \,\vec{c}]+0-0
=2[abc]=2[\vec{a}\, \vec{b} \,\vec{c}]
=2a(b×c)=2a(bcsinπ2n^)=2 \vec{a} \cdot(\vec{b} \times \vec{c})=2 \vec{a} \cdot\left(|\vec{b}||\vec{c}| \sin \frac{\pi}{2} \hat{n}\right)
=2a(2×3×1×n^)=12an^=2 \vec{a} \cdot(2 \times 3 \times 1 \times \hat{n})=12 \vec{a} \cdot \hat{n}
=12an^cos0=12×1×1×1=12=12|\vec{a}||\hat{n}| \cos 0^{\circ}=12 \times 1 \times 1 \times 1=12