Solveeit Logo

Question

Question: If \[\vec a,\vec b,\vec c\] and \[\vec d\] are unit vectors such that \[\left( {\vec a \times \vec b...

If a,b,c\vec a,\vec b,\vec c and d\vec d are unit vectors such that (a×b)(c×d)=1\left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = 1 and ac=12\vec a \cdot \vec c = \dfrac{1}{2}, then
A. a,b,c\vec a,\vec b,\vec c are non-coplanar
B. b,c,d\vec b,\vec c,\vec d are non-coplanar
C. b,d\vec b,\vec d are non-parallel
D. a,d\vec a,\vec d are parallel and b,c\vec b,\vec c are parallel

Explanation

Solution

First of consider the angle between the vectors (a×b)\left( {\vec a \times \vec b} \right) and (c×d)\left( {\vec c \times \vec d} \right) as a variable and find its value to show that the two vectors are in parallel to each other. Likewise find the angle between the vectors a\vec a and c\vec c. Then draw a figure for the vectors a,b,c\vec a,\vec b,\vec c and d\vec d to get the required answer.

Complete step-by-step answer:
Given that a,b,c\vec a,\vec b,\vec c and d\vec d are unit vectors. So, we have a=b=c=d=1\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = \left| {\vec d} \right| = 1.
Also given that (a×b)(c×d)=1\left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = 1
Let the angle between (a×b)\left( {\vec a \times \vec b} \right) and (c×d)\left( {\vec c \times \vec d} \right) be θ\theta .
We know that for the two vectors x\vec x and y\vec y, the dot product is given by xy=xycosθ\vec x \cdot \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\cos \theta where θ\theta is the angle between the two vectors x\vec x and y\vec y.
By using this formula, we have

(a×b)(c×d)=a×bc×dcosθ=1 a×bc×dcosθ=1  \Rightarrow \left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = \left| {\vec a \times \vec b} \right|\left| {\vec c \times \vec d} \right|\cos \theta = 1 \\\ \Rightarrow \left| {\vec a \times \vec b} \right|\left| {\vec c \times \vec d} \right|\cos \theta = 1 \\\

This is only possible when a×b=c×d=cosθ=1\left| {\vec a \times \vec b} \right| = \left| {\vec c \times \vec d} \right| = \cos \theta = 1
So, we have cosθ=1\cos \theta = 1. Thus, θ=900\theta = {90^0}.
Since the angle between the vectors (a×b)\left( {\vec a \times \vec b} \right) and (c×d)\left( {\vec c \times \vec d} \right) is 900{90^0} the two vectors (a×b)\left( {\vec a \times \vec b} \right) and (c×d)\left( {\vec c \times \vec d} \right) are parallel to each other i.e., (a×b)(c×d)..................................(1)\left( {\vec a \times \vec b} \right)\parallel \left( {\vec c \times \vec d} \right)..................................\left( 1 \right)
Also given that ac=12\vec a \cdot \vec c = \dfrac{1}{2}. Let the angle between the two vectors a,c\vec a,\vec c be α\alpha . So, we have

accosα=12 1×1×cosα=12 [a=c=1] cosα=12 α=600 [cos600=12]   \Rightarrow \left| {\vec a} \right|\left| {\vec c} \right|\cos \alpha = \dfrac{1}{2} \\\ \Rightarrow 1 \times 1 \times \cos \alpha = \dfrac{1}{2}{\text{ }}\left[ {\because \left| {\vec a} \right| = \left| {\vec c} \right| = 1} \right] \\\ \Rightarrow \cos \alpha = \dfrac{1}{2} \\\ \therefore \alpha = {60^0}{\text{ }}\left[ {\because \cos {{60}^0} = \dfrac{1}{2}} \right]{\text{ }} \\\

We can draw the vectors as

Since the two vectors (a×b)\left( {\vec a \times \vec b} \right) and (c×d)\left( {\vec c \times \vec d} \right) are parallel to each other and the angle between the vectors a\vec a and c\vec cis 600{60^0} we can say that b\vec b and d\vec d are not parallel.
Thus, the correct option is C. b,d\vec b,\vec d are non-parallel

So, the correct answer is “Option C”.

Note: For the two vectors x\vec x and y\vec y, the dot product is given by xy=xycosθ\vec x \cdot \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\cos \theta where θ\theta is the angle between the two vectors x\vec x and y\vec y. And for the two vectors x\vec x and y\vec y, the cross product is given by x×y=xysinθ\vec x \times \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\sin \theta where θ\theta is the angle between the two vectors x\vec x and y\vec y.