Solveeit Logo

Question

Mathematics Question on Vector Algebra

If (ab)(a+b)=27(\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 27 and a=2b|\vec{a}| = 2|\vec{b}|, then b|\vec{b}| is:

A

3

B

2

C

56\frac{5}{6}

D

6

Answer

3

Explanation

Solution

We are given that a=2b|\vec{a}| = 2|\vec{b}|. To find ab|\vec{a} - \vec{b}|, we use the following approach:
First, recall the formula for the magnitude of the difference between two vectors:
ab=a2+b22ab.|\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}}.
Since a=2b|\vec{a}| = 2|\vec{b}|, we have:
a2=4b2.|\vec{a}|^2 = 4|\vec{b}|^2.
Now, let’s compute the dot product ab\vec{a} \cdot \vec{b}. The vectors a\vec{a} and b\vec{b} are in the same direction, so ab=ab=2b2\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}| = 2|\vec{b}|^2.
Now substitute these values into the magnitude formula:
ab=4b2+b222b2.|\vec{a} - \vec{b}| = \sqrt{4|\vec{b}|^2 + |\vec{b}|^2 - 2 \cdot 2|\vec{b}|^2}.
Simplifying:
ab=4b2+b24b2=b2=b.|\vec{a} - \vec{b}| = \sqrt{4|\vec{b}|^2 + |\vec{b}|^2 - 4|\vec{b}|^2} = \sqrt{|\vec{b}|^2} = |\vec{b}|.
Since b=3|\vec{b}| = 3, we get:
ab=3.|\vec{a} - \vec{b}| = 3.
Thus, the correct answer is: 3.