Solveeit Logo

Question

Question: If \(\vec { a } , \vec { b }\) are non-zero vectors such that \| \(\vec { a }\) + \(\overrightar...

If a,b\vec { a } , \vec { b } are non-zero vectors such that | a\vec { a } + b\overrightarrow { \mathrm { b } } | = | – 2 b\overrightarrow { \mathrm { b } } |, then –

A

ab=2b2\vec { a } \cdot \vec { b } = 2 | \vec { b } | ^ { 2 }

B

ab=b2\vec { a } \cdot \vec { b } = | \vec { b } | ^ { 2 }

C

Least value of ab+4b2+2\vec { a } \cdot \vec { b } + \frac { 4 } { | \vec { b } | ^ { 2 } + 2 } is 22\sqrt { 2 }

D

Least value of ab+4b2+2\vec { a } \cdot \vec { b } + \frac { 4 } { | \vec { b } | ^ { 2 } + 2 } is 22\sqrt { 2 }– 1

Answer

Least value of ab+4b2+2\vec { a } \cdot \vec { b } + \frac { 4 } { | \vec { b } | ^ { 2 } + 2 } is 22\sqrt { 2 }– 1

Explanation

Solution

2 = – 4 + 3 Ž 2= + 4 b2+2\frac { 4 } { | \overrightarrow { \mathrm {~b} } | ^ { 2 } + 2 }

= (1 + ) + 42(ab+1)\frac { 4 } { 2 ( \vec { a } \cdot \vec { b } + 1 ) } – 1 ³ 22\sqrt { 2 }– 1