Question
Question: If \(\vec a,\vec b\) and \(\vec c\) are unit vectors such that \(\vec a + 2\vec b + 2\vec c = \vec 0...
If a,b and c are unit vectors such that a+2b+2c=0, the ∣a×c∣ is equal to:
(A) 41
(B) 415
(C) 1615
(D) 1615
Solution
Since, a,b and c are unit vectors. Therefore, ∣a∣=b=∣c∣=1. Use the formulas a⋅a=∣a∣2 and a⋅b=b⋅a to solve the given relation a+2b+2c=0.
Complete step-by-step answer:
Given, a,b and c are unit vectors.
Therefore, magnitude a,b and c is 1.
So, ∣a∣=b=∣c∣=1
We have, a+2b+2c=0
⇒a+2c=−2b
On squaring both sides,
⇒∣a+2c∣2=−2b2
Using ∣a∣2=a⋅a,
⇒(a+2c)⋅(a+2c)=(−2b)⋅(−2b)
⇒a⋅a+2a⋅c+2c⋅a+4c⋅c=4b⋅b
Now using a⋅a=∣a∣2 and a⋅b=b⋅a,
⇒∣a∣2+2a⋅c+2a⋅c+4∣c∣2=4b2
⇒(1)2+4a⋅c+4(1)2=4(1)2
⇒1+4a⋅c+4=4
⇒4a⋅c=−1
⇒a⋅c=4−1
We have, ∣a⋅c∣2+∣a×c∣2=1 (a and c are unit vectors)
⇒(4−1)2+∣a×c∣2=1
⇒161+∣a×c∣2=1
⇒∣a×c∣2=1−161
⇒∣a×c∣2=1616−1
⇒∣a×c∣2=1615
⇒∣a×c∣=1615
⇒∣a×c∣=415
Hence, option (B) is the correct answer.
Note: The formula ∣a⋅c∣2+∣a×c∣2=1 can be derived as follows:
We know that, a⋅c=∣a∣∣c∣cosθ
⇒∣a⋅c∣2=∣a∣2∣c∣2cos2θ
We also know that, a×c=∣a∣∣c∣sinθ
⇒∣a×c∣2=∣a∣2∣c∣2sin2θ
Now, ∣a⋅c∣2+∣a×c∣2=∣a∣2∣c∣2cos2θ+∣a∣2∣c∣2sin2θ
⇒∣a⋅c∣2+∣a×c∣2=∣a∣2∣c∣2(cos2θ+sin2θ)
⇒∣a⋅c∣2+∣a×c∣2=(1)2(1)2(1)
(∵sin2θ+cos2θ=1)
⇒∣a⋅c∣2+∣a×c∣2=1