Solveeit Logo

Question

Question: If \(\vec a,\vec b\) and \(\vec c\) are unit vectors such that \(\vec a + 2\vec b + 2\vec c = \vec 0...

If a,b\vec a,\vec b and c\vec c are unit vectors such that a+2b+2c=0\vec a + 2\vec b + 2\vec c = \vec 0, the a×c\left| {\vec a \times \vec c} \right| is equal to:
(A) 14\dfrac{1}{4}
(B) 154\dfrac{{\sqrt {15} }}{4}
(C) 1516\dfrac{{15}}{{16}}
(D) 1516\dfrac{{\sqrt {15} }}{{16}}

Explanation

Solution

Since, a,b\vec a,\vec b and c\vec c are unit vectors. Therefore, a=b=c=1\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = 1. Use the formulas aa=a2\vec a \cdot \vec a = {\left| {\vec a} \right|^2} and ab=ba\vec a \cdot \vec b = \vec b \cdot \vec a to solve the given relation a+2b+2c=0\vec a + 2\vec b + 2\vec c = \vec 0.

Complete step-by-step answer:
Given, a,b\vec a,\vec b and c\vec c are unit vectors.
Therefore, magnitude a,b\vec a,\vec b and c\vec c is 11.
So, a=b=c=1\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = 1
We have, a+2b+2c=0\vec a + 2\vec b + 2\vec c = \vec 0
a+2c=2b\Rightarrow \vec a + 2\vec c = - 2\vec b
On squaring both sides,
a+2c2=2b2\Rightarrow {\left| {\vec a + 2\vec c} \right|^2} = {\left| { - 2\vec b} \right|^2}
Using a2=aa{\left| {\vec a} \right|^2} = \vec a \cdot \vec a,
(a+2c)(a+2c)=(2b)(2b)\Rightarrow \left( {\vec a + 2\vec c} \right) \cdot \left( {\vec a + 2\vec c} \right) = \left( { - 2\vec b} \right) \cdot \left( { - 2\vec b} \right)
aa+2ac+2ca+4cc=4bb\Rightarrow \vec a \cdot \vec a + 2\vec a \cdot \vec c + 2\vec c \cdot \vec a + 4\vec c \cdot \vec c = 4\vec b \cdot \vec b
Now using aa=a2\vec a \cdot \vec a = {\left| {\vec a} \right|^2} and ab=ba\vec a \cdot \vec b = \vec b \cdot \vec a,
a2+2ac+2ac+4c2=4b2\Rightarrow {\left| {\vec a} \right|^2} + 2\vec a \cdot \vec c + 2\vec a \cdot \vec c + 4{\left| {\vec c} \right|^2} = 4{\left| {\vec b} \right|^2}
(1)2+4ac+4(1)2=4(1)2\Rightarrow {\left( 1 \right)^2} + 4\vec a \cdot \vec c + 4{\left( 1 \right)^2} = 4{\left( 1 \right)^2}
1+4ac+4=4\Rightarrow 1 + 4\vec a \cdot \vec c + 4 = 4
4ac=1\Rightarrow 4\vec a \cdot \vec c = - 1
ac=14\Rightarrow \vec a \cdot \vec c = \dfrac{{ - 1}}{4}
We have, ac2+a×c2=1{\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1 (a\vec a and c\vec c are unit vectors)
(14)2+a×c2=1\Rightarrow {\left( {\dfrac{{ - 1}}{4}} \right)^2} + {\left| {\vec a \times \vec c} \right|^2} = 1
116+a×c2=1\Rightarrow \dfrac{1}{{16}} + {\left| {\vec a \times \vec c} \right|^2} = 1
a×c2=1116\Rightarrow {\left| {\vec a \times \vec c} \right|^2} = 1 - \dfrac{1}{{16}}
a×c2=16116\Rightarrow {\left| {\vec a \times \vec c} \right|^2} = \dfrac{{16 - 1}}{{16}}
a×c2=1516\Rightarrow {\left| {\vec a \times \vec c} \right|^2} = \dfrac{{15}}{{16}}
a×c=1516\Rightarrow \left| {\vec a \times \vec c} \right| = \sqrt {\dfrac{{15}}{{16}}}
a×c=154\Rightarrow \left| {\vec a \times \vec c} \right| = \dfrac{{\sqrt {15} }}{4}

Hence, option (B) is the correct answer.

Note: The formula ac2+a×c2=1{\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1 can be derived as follows:
We know that, ac=accosθ\vec a \cdot \vec c = \left| {\vec a} \right|\left| {\vec c} \right|\cos \theta
ac2=a2c2cos2θ\Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\cos ^2}\theta
We also know that, a×c=acsinθ\vec a \times \vec c = \left| {\vec a} \right|\left| {\vec c} \right|\sin \theta
a×c2=a2c2sin2θ\Rightarrow {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\sin ^2}\theta
Now, ac2+a×c2=a2c2cos2θ+a2c2sin2θ{\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\cos ^2}\theta + {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}{\sin ^2}\theta
ac2+a×c2=a2c2(cos2θ+sin2θ)\Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left| {\vec a} \right|^2}{\left| {\vec c} \right|^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)
ac2+a×c2=(1)2(1)2(1)\Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = {\left( 1 \right)^2}{\left( 1 \right)^2}\left( 1 \right)
(sin2θ+cos2θ=1)\left( {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right)
ac2+a×c2=1\Rightarrow {\left| {\vec a \cdot \vec c} \right|^2} + {\left| {\vec a \times \vec c} \right|^2} = 1