Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a,b\vec{a}, \vec{b} and c\vec{c} are unit vectors such that a+b+c=0\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} then angle between a and b\vec{a \text { and }} \vec{b} is

A

π2\frac {\pi}{2}

B

π3\frac {\pi}{3}

C

2π3\frac {2 \pi}{3}

D

π\pi

Answer

2π3\frac {2 \pi}{3}

Explanation

Solution

The correct option is(C): 2π3\frac {2 \pi}{3}

Given, a,b,ca , b , c are unit vectors.
a=b=c=1\Rightarrow | a |=| b |=| c |=1...(i)
Also, given a+b+c=0a + b + c =0
(a+b)=c\Rightarrow ( a + b )=- c
Squaring on both sides, we get
(a+b)2=(c)2\Rightarrow (a+ b)^{2}=(c)^{2}
(a)2+(b)2+2ab=(c)2\Rightarrow (a)^{2}+(b)^{2}+2 a \cdot b=(c)^{2}
a2+c2+2ab=c2\Rightarrow | a |^{2}+| c |^{2}+2 a \cdot b =| c |^{2}
[(a)2=a2]\left[\because(a)^{2}=|a|^{2}\right]
1+1+2ab=1\Rightarrow 1+1+2 a \cdot b =1 [from E (i)]
2ab=1\Rightarrow 2 a \cdot b =-1
ab=1/2=abcosθ\Rightarrow a \cdot b =-1 / 2=| a || b | \cos \theta
cosθ=1/2=cos2π/3\Rightarrow \cos \theta=-1 / 2 =\cos 2 \pi / 3 [from E (i)]
θ=2π/3\Rightarrow \theta =2 \pi / 3