Question
Mathematics Question on Vector Algebra
If a,b and c are unit vectors, such that a+b+c=0 then 3a.b+2b.c+c.a
A
-3
B
3
C
-1
D
1
Answer
-3
Explanation
Solution
a,b,c are unit vectors, then ∣a∣=∣b∣=∣c∣=1
Given, a+b+c=0
a=−(b+c)
Squaring on both sides
a2=(b+c)2
a2=b2+c2+2b⋅c
∣a∣2=∣b∣2+∣c∣2+2(b⋅c)
(∵a2=∣a∣2)
1=1+1+2(b⋅c)
⇒b⋅c=−1/2
Similarly, a⋅b=c⋅a=−1/2
Hence, 3a⋅b+2b⋅c+c⋅a
=3(−1/2)+2(−1/2)+(−1/2)
=(3+2+1)(−1/2)
=6(−1/2)=−3