Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a,b\vec{a}, \vec {b} and c\vec {c} are unit vectors, such that a+b+c=0\vec {a}+\vec {b} +\vec {c}=0 then 3a.b+2b.c+c.a3\vec {a}.\vec {b} +\vec {2b}.\vec {c} +\vec {c}.\vec {a}

A

-3

B

3

C

-1

D

1

Answer

-3

Explanation

Solution

a,b,c\vec{ a }, \vec{ b }, \vec{ c } are unit vectors, then a=b=c=1|\vec{ a }|=|\vec{ b }|=|\vec{ c }|=1
Given, a+b+c=0\vec{ a }+\vec{ b }+\vec{ c }=0
a=(b+c)\vec{ a }=-(\vec{ b }+\vec{ c })
Squaring on both sides
a2=(b+c)2a ^{\vec{2}} =(\vec{ b }+\vec{ c })^{2}
a2=b2+c2+2bca ^{\vec{2}} =\vec{ b }^{2}+ c ^{\vec{2}}+2 \vec{ b } \cdot \vec{ c }
a2=b2+c2+2(bc)|\vec{ a }|^{2} =|\vec{ b }|^{2}+|\vec{ c }|^{2}+2(\vec{ b } \cdot \vec{ c })
(a2=a2)\left(\because a ^{\vec{2}}=|\vec{ a }|^{2}\right)
1=1+1+2(bc)1=1+1+2(\vec{ b } \cdot \vec{c})
bc=1/2\Rightarrow \vec{ b } \cdot \vec{ c }=-1 / 2
Similarly, ab=ca=1/2\vec{ a } \cdot \vec{ b }=\vec{ c } \cdot \vec{ a }=-1 /2
Hence, 3ab+2bc+ca3 a \cdot \vec{ b }+2 \vec{ b } \cdot \vec{ c }+\vec{ c } \cdot \vec{ a }
=3(1/2)+2(1/2)+(1/2)=3(-1 / 2)+2(-1 / 2)+(-1 / 2)
=(3+2+1)(1/2)=(3+2+1)(-1 / 2)
=6(1/2)=3=6(-1 / 2)=-3