Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a,b\vec{a}, \vec{b} and c\vec{c} are three vectors such that a+b+c=0\vec{a} + \vec{b} + \vec{c} = 0, where a\vec{a} and b\vec{b} are unit vectors and c=2|\vec{c}| = 2, then the angle between the vectors b\vec{b} and c\vec{c} is:

A

6060^\circ

B

9090^\circ

C

120120^\circ

D

180180^\circ

Answer

180180^\circ

Explanation

Solution

Given:

a+b+c=0c=(a+b)\vec{a} + \vec{b} + \vec{c} = \vec{0} \Rightarrow \vec{c} = -(\vec{a} + \vec{b})

The magnitude of c\vec{c} is:

c2=a+b2|\vec{c}|^2 = |\vec{a} + \vec{b}|^2

Expand using the vector magnitude formula:

c2=a2+b2+2ab|\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}

Substitute a=b=1|\vec{a}| = |\vec{b}| = 1 and c=2|\vec{c}| = 2:

22=1+1+2(ab)2^2 = 1 + 1 + 2(\vec{a} \cdot \vec{b})

Simplify:

4=2+2(ab)4 = 2 + 2(\vec{a} \cdot \vec{b})

Solve for ab\vec{a} \cdot \vec{b}:

2(ab)=2ab=02(\vec{a} \cdot \vec{b}) = 2 \Rightarrow \vec{a} \cdot \vec{b} = 0

This means a\vec{a} and b\vec{b} are perpendicular.

From the equation c=(a+b)\vec{c} = -(\vec{a} + \vec{b}):

  • Since a\vec{a} and b\vec{b} are perpendicular, their resultant a+b\vec{a} + \vec{b} forms a diagonal of a square with side length 1.
  • The magnitude of a+b\vec{a} + \vec{b} is:

a+b=a2+b2=12+12=2|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2} = \sqrt{1^2 + 1^2} = \sqrt{2}

Thus:

c=(a+b)\vec{c} = -(\vec{a} + \vec{b})

and its direction is opposite to a+b\vec{a} + \vec{b}.

Since c\vec{c} is opposite to a+b\vec{a} + \vec{b}, and b\vec{b} contributes to c\vec{c}, the angle between b\vec{b} and c\vec{c} is

θ=180.\theta = 180^\circ.

Thus:

180.180^\circ.